738

Biometrics from Brain Electrical Activity:
A Machine Learning Approach
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Abstract—The potential of brain electrical activity generated as a response to a
visual stimulus is examined in the context of the identification of individuals.
Specifically, a framework for the Visual Evoked Potential (VEP)-based biometrics
is established, whereby energy features of the gamma band within VEP signals
were of particular interest. A rigorous analysis is conducted which unifies and
extends results from our previous studies, in particular, with respect to
1) increased bandwidth, 2) spatial averaging, 3) more robust power spectrum
features, and 4) improved classification accuracy. Simulation results on a large
different classification techniue, which was based on computa-
tional geometry (convex polygon intersections) and gave an
improved average classification of 95 percent. These experiments
were conducted for a relatively small number of subjects.
In our previous studies, we used VEP-based biometrics [16]
whereby the energy of the gamma band VEP potentials was used
as a feature. The underlying hypothesis underpinning this
approach was that the perception of a visual stimulus (black and
white drawings of common objects) evokes brain activity related to
recognition and memory, which is known produce a significant
change in gamma band oscillations [19] these are known to be
distinct among humans and, therefore, a candidate for biometrics.
Applications of this kind of biometrics include those related to
access to classified documents and situations where fingerprints
could be easily forged. Most of other biometrics modalities, such as
the palmprint, face, and iris are also prone to forgery, whereas it is
not possible to duplicate mental activity within the brain.
e here present a framework for brain electrical activity-based
biometrics, where our emphasis is on revealing the potential of this
biometric modality. e first introduce the VEP-based biometrics
and propose several modifications of our previous work, in order to
improve the classification accuracy. These include a much more
comprehensive data set and a rigorous analysis of the classification
performance. Techniues used include those based on the k-Nearest
Neighbors (kNN), EIman Neural Network (ENN) clasifiers, and
10-fold Cross Validation Classification (CVC).
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2 EXPERIMENTAL SETTING

The VEP signals were recorded from the subjects being shown
black and white drawings of common objects, extracted from the
Snodgrass and Vanderwart picture set [20]. Fig. 1 shows some of
these pictures, which were displayed on a computer monitor
located 1 m from the subject. The mental task was to recognize and
remember the picture shown. This is a well-known experiment,
originally designed to study short-term differences in human
memory [21], whereby a second picture is subsequently shown
where the object belongs either to the same class of objects or
different. For the purpose of this study, we shall only use the VEP
signals recorded during the presentation of the first picture.

We have analyzed the VEP measurements (sampled at 256 Hz)
coming from 61 active channels, where the electrodes were placed
on the scalp according to the extension of the 10-20 electrode
positioning system (Standard Electrode Positioning Nomenclature,
American Encephalographic Association), as shown in Fig. 2. The
stimulus duration of every picture was 300 ms. One second
measurements after each stimulus onset were stored for analysis.

1. In the paper, it is referred to as Learning Vector Quantizer, though the
common name is Learning Vector Quantization.
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Fig. 4. Example of VEP (a) before filtering and (b) after filtering.

Notice that there is a possibility that the same subject exhibits
similar gamma band energy patterns in different sessions,
however, the recorded signal power is not likely to be the same.
In order words, we have strong indications that the ratios among
the gamma band energies across the channels do not vary over
time but instead the subjects exhibit scaling of gamma band
energies in all the channels. The baseline measure using common
spatial average (2) serves to reduce this intraclass variance. Fig. 5
shows the reduction in intraclass standard deviation through the
use of common spatial average as a baseline measure for one
subject (from 50 VEP signals) over 61 channels. The sum of the
standard deviation values over all the 61 channels was 0.215 for the
case with spatial averaging, and 0.237 with no spatial averaging.

4.3 Feature Extraction: MUSIC Dominant Power

After the low-level signal processing (Sections 4.1 and 4.2), in the
second stage of the proposed EEG data analysis, we perform feature
extraction. These features will serve as unique descriptors of
person’s brain activity and will provide an input to the classification
stage. In addition, by extracting features from raw data, the
dimensionality of the problem is dramatically reduced. The Multiple
Signal Classification (MUSIC) algorithm [22] was used to estimate
the dominant frequency and power content for the cases where it
was assumed that there was only one dominant sinusoid in each
channel of the filtered VEP signal. The MUSIC algorithm belongs to
the class of subspace methods, also known as high-resolution
methods or superresolution methods, and is based on the eigenana-
lysis or eigendecomposition of the data correlation matrix. The
choice of the MUSIC algorithm in order to produce feature vectors
was also suggested by some previous studies on the analysis of EEG
for sleep spindles [23]. In addition, in[24], it was shown that MUSIC-
based spectral analysis is particularly suitable for spectral estimation
of a combination of modulated sinusoidal signals; the VEP signal in
gamma band exhibits exactly this behavior (as shown in Fig. 4b).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29,

NO. 4, APRIL 2007

0.03 " T " T T "

0.025

.
H
H
H
H
-
-
-
H
-
-
-
-

0.015

Standard deviation values

0.005 |

70
Channels

Fig. 5. Standard deviation values for 50 VEP signals over 61 channels. Solid line:
standard deviation with spatial averaging as baseline measure. Dotted line:
standard deviation without the use of spatial average.

Since the dominant frequencies within the VEP spectrum varied
from subject to subject and from channel to channel, we only used
the power spectrum component within the MUSIC spectrogram.
These were subsequently normalized using the total power from
all the 61 channels. These normalized power values from each of
the 61 channels were concatenated into a feature vector.

4.4 Feature Vector Classification

In the third stage of our proposed framework for VEP-based
person identification, the features extracted in the second stage
were classified (decision making process). In the kNN algorithm
[25], the classification is performed based on the class of k-nearest
neighbors of the feature vector. Here, the kNN algorithm was
implemented using the Manhattan distance metric to locate the
nearest neighbors. The decision rule used as a discriminant
criterion within KNN was the majority rule. The number of nearest
neighbors used to classify the new VEP test vector was varied from
1 to 5 in integer increments.

For comparison, an ENN with three layers of units was
employed, with the hyperbolic tangent activation function in its
hidden layer, and a sigmoid activation function in its output layer.
The resilient-backpropagation (RBP) algorithm [26] was used to
train the ENN, and the training was conducted until the mean-
square error fell below a threshold of 0.0001. The ENN architecture
and RBP training algorithm were chosen based on our previous
experience, and also empirically after some preliminary experi-
ments. These preliminary experiments (using a small subset of the
data set) were conducted to decide the suitable training algorithm
(fastest with available memory) among different types of back-
propagation (BP) algorithms—standard BP, BP with momentum, BP
with adaptive learning, Levenberg-Marquardt BP and RBP. Other
preliminary experiments were also conducted using the standard
MLP with three layers of units and ENN, which showed that ENN
gave better classification performance. The number of input layer
units was 61 as there were 61 normalized dominant frequency
power features for each VEP signal. The inputs were normalized to
fit within the range [ —1, 1] using the minimum and maximum value
of each feature from all the VEP feature vectors, as this would
improve the ENN training. The number of output layer units was
102 so that the ENN could classify into one of the 102 categories
representing the subject. One-hot encoding was used for the target
values (either 0 or 1). The number of hidden layer units was varied
between 50 and 300 in steps of 50. These parameters of ENN were
chosen based on the results from [18], where ENN was shown to be a
suitable classifier for VEP biometrics.
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TABLE 1
Averaged ENN Classification Results (Standard Deviation)
Using EL, SMT, and Improved Features

Previously used features Improved

ENN HUs EL SMT features
At 95.09 (1.48) 94.63 (1.34) 96.77 (1.26)
100 96.15 (1.53) 96.32 (1.10) 97.42 (1.06)
150 96.83 (1.16) 96.15(1.80) 97.47 (1.48)
200 96.87 (0.96) 96.07 (1.08) 98.12 (1.26)
230 96.94 (1.44) 96.38 (1.43) 97.95 (0.87)
300 96.74 (1.03) 96.54 (1.23) 97.98 (1.25)
Maximum o6 04 (1.44) 96.54 (1.23) 98.12 (1.26)

TABLE 2

Averaged kNN Classification Results (Standard Deviation)
Using EL, SMT, and Improved Features

Previously used features Improved
k EL SMT features
! 92.87 (1.49) 91.94(1.54) 96.13 (1.03)
2 89.97 (1.87) 90.08 (1.72) 95.00 (1.07)
3 90.96 (2.09) 89.66 (2.21) 96.01 (1.14)
. 89.97 (2.50) 89.13 (2.57) 96.08 (1.16)
> 89.75 (1.88) 88.48 (2.04) 96.03 (1.25)
Maximum o) 67 (1.49) 91.94 (1.54) 96.13 (1.03)

5 EXPERIMENTAL STUDY

In the experiments, we used a total of 3,560 VEP signals from
102 subjects. There was a minimum of 10 and a maximum of 50 eye
blink free VEP signals from each subject (in multiples of 10). Three
different experiments were conducted with features produced by
the EL, SMT, and the proposed improved features. Two classifiers
were used: ENN and kNN. For comparison, kNN was chosen due to
its simplicity. A 10-fold CVC scheme was used to increase the
reliability of the results. Using this scheme, the VEP feature vectors
were split randomly into 10 sets, each containing equal number of
VEP feature vectors from each subject. Training was conducted
using nine sets of feature vectors, while testing was conducted using
the remaining set. This was repeated for 10 times, each time using
nine different sets for training and the remaining set for testing,
whereby the averages and standard deviations of the classification
performances were calculated.

6 CLASSIFICATION RESULTS AND DISCUSSION

From the results in Tables 1 and 2, we can see that the classification
performances based on the proposed improved features were better
than those based on EL® and SMT features. This is the case for both
ENN and kNN classifiers. ENN classification performances were
slightly higher than those of kNN, which proved true for all the
different used feature extraction methods. The maximum ENN
classification accuracy for the improved feature extraction method
was 98.12+ 1.26 (HU = 200), while the classification performances

3. The previous method used in [16] will be denoted as EL, while the
method used in [17] as SMT.
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Fig. 6. Box plots of overall classification results using (a) ENN and (b) kNN.
Method 1: EL features, Method 2: SMT features, and Method 3: improved features.

for EL and SMT methods were 96.94 +1.44 (HU = 250) and
96.54 +1.23 (HU = 300). For kNN, the corresponding maximum
classification accuracies were 92.87+ 1.49, 91.94+ 1.54, and
96.13+ 1.03 and were obtained for & = 1.

To perform statistical analysis of the classification results, the
Kuskal-Wallis one way variance analysis was utilized, which gave
p = 0.0016 and p = 4.25¢ — 7 for ENN and kNN classifiers, respec-
tively. This shows that the classification results were significantly
different along the employed methods. Fig. 6 shows the box plots for
each of the classifier (using all HU and k values), which clearly
indicates the benefits of the proposed approach.

The ENN classification performances obtained here were
slightly lower than previous studies reported in [16], [17], [18].
This was likely due to the significant increase in the size of the VEP
data set. In terms of the algorithm complexity, ENN is much more
algorithmically complex than kNN and requires tedious analysis
in the design stage (architecture, learning algorithm) in addition to
requiring longer training time. The kNN, in contrast, requires no
explicit training. A major disadvantage of kNN is its longer
computation time during testing, since in order to classify a test
VEP feature vector, its distance to all the training VEP feature
vectors needs to be calculated.

Notice that gamma band oscillations are evoked during visual
perception, especially when a stimulus is being recognized and
that these oscillations contribute to the feature binding process
(which is necessary during stimulus perception [19]). The overall
high classification results indicate that the feature binding process
has different properties for different subjects. It is speculated in the
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literature that this feature binding process could have a direct
relation to the genetic material though only clinical trials would be
able to give conclusive results.

7 CONCLUSION

This study has analyzed the potential of dominant frequency
powers in gamma band VEP signals as a biometrics. A framework
for the VEP data analysis has been established and the existing
results in the signal conditioning, feature extraction, and classifica-
tion stage have been summarized. The proposed approach was
tested on a large group of subjects with a high number of VEP
signals. The proposed framework, supported by the analysis and
simulations has clearly indicated the significant potential of brain
electrical activity as a biometrics.
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