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Abstract

This paper investigates the characterization ability of linear and nonlinear Q1

features and proposes combining such features in order to improve classification

of biological signals, in particular single-trial electroencephalogram (EEG) and

electrocardiogram (ECG) data. For this purpose, three data sets composed

of ECG, epileptic EEG and finger-movement EEG were utilized. The

characterization ability of seven nonlinear features namely the approximate

entropy, largest Lyapunov exponents, correlation dimension, nonlinear

prediction error, Hurst exponent, higher order autocovariance and asymmetry

due to time reversal are compared with two linear features namely the

autoregressive (AR) reflection coefficients and AR model coefficients. The

features were tested by their ability to differentiate between different classes

of data using a linear discriminant analysis (LDA) method with tenfold

cross-validation. The class separability of combined linear and nonlinear

features was assessed using sequential floating forward search with linear

discriminant analysis method (SFFS-LDA). The results demonstrated that

linear and nonlinear features on their own provided comparable results for the

ECG data set and the finger-movement EEG data set whilst the linear features

provided a better class separability compared to nonlinear features for the

epileptic EEG data set. Combining linear and nonlinear features demonstrated

a significant improvement in the class separability for all of the data sets where

an average improvement of 20.56%was obtained with the ECG data set, 7.45%

with finger-movement data set and 6.62% with the epileptic EEG data set.

Overall results suggest that the use of combined linear and nonlinear feature

sets would be a better approach for the characterization and classification of

biological signals such as EEG and ECG.
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1. Introduction

Conventional feature extraction methods for the analysis of biological signals utilize time-

and frequency-based methods (Anderson et al 1998, Chua et al 2008, Geng et al 2008,

Phothisonothai and Nakagawa 2008, Pires et al 2007, Tamil et al 2008 and Zhang et al

2008). The theory behind these methods assumes that these signals are linear. Although such

methods provide reasonable results, the underlying nonlinear properties of these signals are

ignored. Therefore, the requirements for further characterization and a better understanding of

biological signals has led to an increasing interest in nonlinear methods adopted from higher

order statistics, nonlinear dynamics and chaos theory domains.

In recent years, there have been many research studies on nonlinear features for the

analysis of biological signals. The majority of research studies have been devoted to analysis

of electroencephalogram (EEG) signals recorded from subjects with different pathological

conditions such as epilepsy (Lehnertz 2008, Greene et al 2008, Casdagli et al 1996, Gautama

et al 2003, Andrzejak et al 2001, Akay 2001), Alzheimer’s (Czigler et al 2008), schizophrenia

(Sabeti et al 2009, Lee et al 2001) and sleep disorders (Olbrich et al 2003, Berryman et al 2005,

Shen et al 2003) as well as the analysis of heart rate variability (HRV) (Benitez et al 2009,

Akay 2001) and electrocardiogram (ECG) (Owis et al 2002, Small et al 2002, Akay 2001)

signals recorded from healthy subjects and patients with heart rhythm disorders. In general

these research studies have focused specifically on nonlinear dynamic measures, with little

to no literature on direct comparisons between such measures and their linear counterparts.

The focus on single type of measures also means that few studies have been performed which

investigate the combination of linear and nonlinear measures for the characterization and

classification of biological signals.

In this study, we set out to investigate the characterization ability of linear autoregressive

(AR) features and five nonlinear features adopted from nonlinear dynamics and chaos theory

domain, namely the approximate entropy (APEN), largest Lyapunov exponents, correlation

dimension (CD), nonlinear prediction error (NLPE) and Hurst exponent. We also test two

nonlinear features adopted from higher order statistics domain, namely the higher order

autocovariance and asymmetry due to time reversal.

Three biological signal data sets composed of ECG, epileptic EEG and finger-movement

EEG are used in this study. The features were assessed by their ability to differentiate between

different classes of data. Class separability was investigated through direct comparison

between linear and nonlinear features and also by comparing combined linear and nonlinear

feature sets with different parameter settings.

2. Data sets

In this study, we have utilized three data sets which are composed of ECG signals recorded

from healthy subjects and patients with premature contractions1, EEG signals recorded from

healthy subjects during an idle (resting) state and during flexion/extension of the left index

finger and EEG signals recorded from healthy subjects and epilepsy patients.

2.1. ECG data set

The ECG data from Massachusetts General Hospital/Marquette Foundation (MGH/MF)

database (see MIT-BIH Arrhythmia Database) were used in this study. For analysis, three

1 Premature contractions are the heart beats that occur earlier than expected and cause irregularity in the usual rhythm

of the heart. The occurrences of premature heart beats are not life threatening but are indication of heart problems

that can be predisposition to life-threatening arrhytmias (Beasley 2003).
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Figure 1. The timing scheme of the experimental paradigm.

classes of ECG beats were considered: the premature supraventricular contraction (PSC)

beats, premature ventricular contraction (PVC) beats and normal (N) beats. Data from ten

subjects for each class were chosen from tapes mgh001–mgh050 after visual inspection for

errors. Here we have utilized 30 randomly chosen recordings from each subject and extracted

three consecutive beats (QRS complexes) from each recording using the Pan and Tomkins

algorithm (Pan and Tompkins 1985). There were a total of eight signals from each recording

which included the data from three ECG leads, arterial pressure, pulmonary arterial pressure,

central venous pressure, respiratory impedance and airway CO2 waveforms. Here we have

only utilized the signals from three ECG leads. Thus a total of 8100 beats comprising

2700 N, 2700 PSC and 2700 PVC beats (10 subject × 30 recordings × 3 beats × 3 leads)

were extracted for this study.

Prior to analysis, the ECG signals were pre-processed to remove high frequency content,

baseline noise and 60 Hz powerline interference by using a bandpass filter from 1 to 35 Hz.

2.2. EEG data set I

The EEG data set was recorded from nine right-handed subjects (all subjects were male),

with ages ranged from 23 to 46. Subject 8 had experience in using a BCI system based

on self-paced movement, subjects 3 and 5 had experience in offline BCI experiments and the

remaining subjectswere naive toBCI use. Signalswere acquired using theGuger Technologies

g.Bsamp device. EEG signals were recorded over the motor cortex from five bipolar channels

located at C3, C1, Cz, C2 and C4, referenced to the right mastoid. Electromyogram (EMG)

signals were recorded from the flexors of the left forearm for labeling of movement- and

non-movement-related EEG. All data were sampled at 256 Hz.

Within each run, the subjects were asked to perform self-paced flexion/extension of the

left index finger whilst a fixation cross was visible on the screen. They were instructed to

perform each movement for 5–10 s and to rest for a minimum of 10 s between movements.

As the data were un-cued the number of trials within each run was variable. Each subject

performed three runs in a single session. Each run lasted for 610 s where the subjects had

5 s of pre-waiting and post-waiting periods before and after the fixation cross appeared on

the screen for 600 s. The timing scheme of a run is illustrated in figure 1. Instructions were

given to concentrate on the fixation cross as much as possible during each run. After each run

the EMG recordings were assessed to ensure that the subjects understood requirements of the

experiment.

2.3. EEG data set II

The EEG signals in this data set were obtained from Bonn University EEG database (see

Epileptic EEG Database). There were a total of five classes (A–E) in this data set, each
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containing 100 single channel EEG segments. The EEG signals were recorded using a 128

channel system and common average referencing was applied. Signals were digitized with a

12 bit analogue-to-digital conversion and recorded at a sampling rate of 173.61 Hz. For each

set, EEG segments of length 23.6 s were selected and cut from multichannel EEG recordings

after visual inspection for artifacts such as muscle activity or eye movements.

The sets A and B consist of EEG segments recorded from five healthy subjects (using the

international 10–20 electrode placement system) during the resting state with eyes open (set

A) and eyes closed (set B). The sets C, D and E consist of EEG segments recorded from five

epilepsy patients. All of the patients had achieved complete seizure control after resection of

one of the hippocampal formations, indicating correct diagnoses of the epileptogenic zone.

Segments in set C were recorded from the hippocampal formation of the opposite hemisphere

of the brain whilst segments in set D were recorded from the epileptogenic zone. Segments

in sets C and D were recorded during seizure-free intervals and segments in set E during the

seizure interval.

3. Methods

3.1. Nonlinear features

In order to characterize the nonlinear properties in EEG and ECG segments, we have utilized

two features from higher order statistics domain, namely the higher order autocovariance and

asymmetry due to time reversal, and five features from nonlinear dynamics and chaos theory

domains namely the APEN, largest Lyapunov exponents, CD, NLPE and Hurst exponent.

3.1.1. Higher order statistics features. The higher order autocovariance and asymmetry due

to time reversal features were adopted from the nonlinearity analysis literature where they

were used along with the surrogate data method to investigate the indications of nonlinear

structures in the time series data (Gautama et al 2003, 2004).

Higher order autocovariance. In the nonlinearity analysis literature, this feature is basically

defined as the third-order autocovariance (C3) method. This feature measures the dependence

of time series on two time shifted versions of itself,

C3(τ ) = (N − 2τ)−1 · 6N
n=2τ+1(x(n) · x(n − τ) · x(n − 2τ)), (1)

where x(n) is the time series of the length N and τ is the time lag.

In this study we have extended this feature to estimate the dependence of time series for

higher orders such that

cX(τ) = (N − mτ)−1 · 6N
n=mτ+1(x(n) · x(n − τ) · . . . · x(n − mτ)), (2)

where τ is the time lag and m is the order. The selection of order, m, and time lag, τ ,

parameters were treated as embedding parameter selection problem which will be explained in

section 3.1.2.

Asymmetry due to time reversal. The asymmetry due to time reversal (REV) measures the

irreversibility of time series which is a property of nonlinear time series (Gautama et al 2003,

2004). This measure is given by

REV(τ ) = (N − 1− τ)−1 · 6N
n=1+τ (x(n) − x(n − τ))3, (3)
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where x(n) is the time series of the length N and τ is the time lag. Here, the REV feature

is extracted with the time lag, τ , ranging from 1 to 10. The time lag that yielded the highest

feature separability was chosen as optimal.

3.1.2. Nonlinear dynamic features. The first step in nonlinear dynamic measure estimation

is state space reconstruction where the univariate data are transformed to its trajectory in

multidimensional state space. Supposing that a single scalar time series {x(t), t = 1, . . . , N}

is measured from the m-dimensional system using an observation function g(·) such

that

x(t) = g(s(t)), g : M → R, s(n) ∈ M ⊆ Rm, (4)

where s(t) stands for the state of system at time t andM is the representation ofm-dimensional

state space. The observation function g(·) cannot provide the complete representation of the

underlying properties of the dynamical system. According to the Takens theorem (Takens

1981), this can be achieved by representing single scalar time series as time lagged versions

of itself such that

f : R → Rm, yt = f (x(t)) = [x(t), x(t − τ), . . . , x(t − (m − 1)τ )], (5)

where τ is the time lag, m is the embedding dimension and yt is the state vector at time t.

The selection of the embedding dimension, m, and time lag, τ , parameters is important

to achieve a good reconstruction of the time series in state space. In this study we have

used three approaches for the selection of embedding parameters. In the first approach,

we have utilized the conventionally used false nearest neighbors method along with first local

minimum ofmutual information function for estimation ofm and τ , respectively. In the second

approach, we have used the false nearest neighbors method along with first zero crossing of

autocorrelation function for estimation of m and τ . In the third approach, we have selected

the embedding dimension, m, and time lag, τ , pairs by minimization of the NLPE on EEG

and ECG segments. The parameter pairs estimated by this method lead to reconstruction that

exploits the nonlinear deterministic nature of the time series in state space; further information

about this approach can be found in our previous work (Balli and Palaniappan 2009). The

three approaches were used to investigate the effect of parameter selection methods on the

separability of features for different classes of data. Additionally, we have performed an

exhaustive search on the parameter space, with m values ranging from 2 through 10 and τ

values ranging from 1 through 10, in order to explore the parameter pairs that maximize the

class separability of different features.

Approximate entropy method. The APEN is a measure that quantifies the irregularity of a

time series proposed by Pincus (1991). This measure can be estimated as follows:

Cm
i =

Nv∑

j=1

2(r − ‖yi − yj‖)

Nv
, (6)

where Nv is the number of vectors in state space, r is the tolerance of comparison value, yi

and yj are vectors reconstructed in m-dimensional state space, ‖ · ‖ represents the Euclidean

distance between vectors and2(x) is the Heaviside function such that2(x) = 1 if x > 0 and

2(x) = 0 if x 6 0. APEN(m, r) is obtained by

ApEn(m, r) = 8m(r) − 8m+1(r), (7a)
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8m(r) = (N − (m − 1))−1 ·

N−(m−1)∑

i=1

ln
[
Cm

i (r)
]
, (7b)

where N is the length of time series and m is the embedding dimension.

The estimation of APENmeasure involves selection of tolerance of the comparison value,

r, in addition to embedding parameters,m and τ . In previous studies, it has been suggested that

the r value of 0.2 times standard deviation of time series provides good statistical validity (Akay

2001). However in our prior studies, we found out that feature separability was improved

using r values higher than 0.2 times standard deviation of time series (Dyson et al 2008).

Therefore, this feature was estimated with r parameter values ranging from 0.2 to 5 times

standard deviation of time series with increments of 0.2 in this study. The best r parameter

was selected according to classification results. In our prior studies, we have also investigated

that the APEN features estimated with different r values were complementary to each other,

providing an improved characterization of EEG and ECG signals. Therefore, in this study

the APEN features with r values ranging from 0.2 to 5 times standard deviation of time series

were included in the feature space for selection of complimentary features.

Largest Lyapunov exponent. The largest Lyapunov exponent (LLE) quantifies the average

exponential divergence of nearby trajectories in state space where the sensitive dependence

on initial conditions is obtained. In the literature several algorithms have been proposed for

the calculation of LLE (Akay 2001, Kantz and Schreiber 1997, Sprott 2003). In this study

we have used Rosenstein’s algorithm (Rosenstein et al 1993) where the LLE measure was

estimated as follows: for each state space vector yj the distance to the nearest neighbor yi was

calculated (equation (8a)), and then two neighboring points are evolved in state space by time

t to calculate the new separation distance (equation (8b)):

dj (0) = ‖yj − yi‖, (8a)

dj (t) = ‖yj+t − yi+t‖. (8b)

The largest Lyapunov can be calculated using a least-squares fit to the average line defined

by L(t) = 〈ln dj (t)〉.

Correlation dimension. CD is a measure of the dimensionality of the space occupied by state

vectors, which is also referred to as fractal dimension2 (Akay 2001, Kantz and Schreiber 1997,

Sprott 2003). There are several algorithms for the estimation of CD, and in this study we have

utilized the Grassberg–Procaccia algorithm (Akay 2001, Kantz and Schreiber 1997, Sprott

2003). Using this algorithm, the CD was estimated by first calculating correlation integral,

C(r) which is defined in equation (6), over a range of r values. Then, the plot of logC(r)

versus log r should have a linear scaling region whose slope, in the limit of small r and large

N, was the CD,

CD = lim
r→0

lim
N→∞

d lnC(r)

d ln r
. (9)

Nonlinear prediction error. The NLPE is a simple algorithmwhich exploits the deterministic

structure in the time series (Kantz and Schreiber 1997). This algorithm works by constructing

local linear models on a given state space vector.

2 A fractal dimension is any dimension measurement that allows noninteger values.
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First of all, the state vectors, yt, reconstructed from univariate time series, x(t), were

divided into train, Ytrain, and test sets, Ytest, in which every state vector yt in the train and test

sets has a target data point, x(t + T ), for T step ahead prediction. Therefore for every state

vector yi, with corresponding target x(i + T ), in the test set, k nearest neighbors from the train

set {yj ; j = 1, . . . , k}, with corresponding targets {x(j + T ); j = 1, . . . , k}, were grouped

together. In order to do the prediction, a linear model defined by

x(j + T ) = a0 +

m∑

k=1

akyj (k), (10)

was fitted to k state vectors and their target values. The model parameters were estimated

using the recursive least-squares algorithm. Following this the estimated model was used

to predict x(i + T ) using the yi vector as input and the prediction error was calculated as

e = 〈|x(i + T ) − x̂(i + T )|〉.

In this study we have set T to 1 and k to 1/d {d; d = 1, . . . , 20} of total number of state

vectors in the train set. The k value leading to the highest feature separability was selected

while testing the individual features. Furthermore, preliminary studies have shown that NLPE

features with different k values were complimentary to each other with some of the embedding

parameter pairs leading to improved characterization of EEG and ECG signals. Therefore,

the NLPE features with k values 1/d {d; d = 1, . . . , 20} were included in the feature space for

selection of complimentary features.

Hurst exponent. The Hurst exponent (HURST), which is also called rescaled range statistics

(R/S), was used for quantifying the self-similarity of time series, providing information on

the recurrence rate of similar patterns in time series at different scales (Akay 2001, Sprott

2003). Unlike the rest of nonlinear dynamic features, this feature does not involve state space

reconstruction.

The HURST exponent estimates range between 0 and 1. HURST = 0.5 indicates that

there is no correlation in the time series; 0 < HURST < 0.5 indicates that time series has long-

range anti-correlations and 0.5 < HURST < 1 indicates that there is long-range correlations

in the time series.

In order to estimate the Hurst exponent from time series, x(t), first, the accumulated

deviation from the mean of time series over time T was calculated:

XT (t) =

t∑

i=1

x(i) − x, (11)

with t = 1, . . . , T .

The R(T ) was calculated as the difference between the maximum and minimum value of

XT (t) and S(T ) was calculated as the standard deviation of time series over time T:

R(T )

S(T )
=
max(XT (t)) −min(XT (t))
(
1
T

∑T
t=1(x(t) − x)2

)1/2 . (12)

The Hurst exponent was obtained by calculating the average rescaled range over different

scaling regions and the slope of line produced by ln(R(n)/S(n)) versus ln(n) resulted in an

estimate of the Hurst exponent.

3.2. Linear features

We have employed the linear ARmodel for characterizing the amplitude-dependent properties

of EEG and ECG signals.
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3.2.1. Linear autoregressive model. An AR model of order p is given by

x(t) = −

p∑

i=1

akx(t − k) + et , (13)

where x(t) are the data at time t, ak are the AR model coefficients and et is the Gaussian white

noise with mean zero.

In this study, we have usedARmodel coefficients andAR reflection coefficients, estimated

by Burg’s method (Burg 2005), as features from EEG and ECG segments. The optimal model

order was selected by extracting the AR coefficients with order ranging from 1 to 10 and

the model order that maximized the separability of features for different classes of data was

chosen.

3.3. Feature extraction and classification

The feature sets from the ECG data set were created by extracting the linear and nonlinear

features from three consecutive beats taken from each recording belonging to each subject.

For each class (N, PSC, PVC) a total of 900 features (10 subjects × 30 recordings × 3 leads)

were extracted for testing the separability of linear and nonlinear features. The separability

of individual features was assessed using the linear discriminant analysis (LDA) method with

tenfold cross-validation. Training and testing sets for classification were created using feature

sets from different subjects (i.e. with tenfold cross-validation, the features from nine subjects

were used for training and the features from remaining one subject were used for testing);

therefore, the system was not subject dependent.

The features from EEG data set I were extracted using a window of 256 samples with

an overlap of 64 samples. During the recording session, the subjects were asked to perform

self-paced movement; therefore, the length of movement and non-movement segments was

variable for different runs recorded from subjects. To ensure equal sample sizes for each class,

the minimum number of samples, N, for each class within a run was taken and N sample

points were used from each class. The separability of individual features was assessed using

the LDA method with tenfold cross-validation. The training and testing sets were created by

shuffling movement and following non-movement trials from all sessions where 9/10 of trials

were used for training and 1/10 of trials were used for testing in each fold. The separability of

individual features for each subject was tested based on channels.

The signals in EEG data set II were divided into eight non-overlapping segments with

512 data points for feature extraction. We have adopted the weak stationarity criterion from

Andrzejak et al (2001) for choice of the segment length. A total of 800 features (i.e. 100 single

channel EEG divided into eight segments) were extracted from each class (A, B, C, D and E)

for testing the feature separability. The separability of individual features was assessed using

the LDA method with tenfold cross-validation.

The class separability using combined linear and nonlinear features for three data sets

was further assessed using sequential floating forward search with linear discriminant analysis

method (SFFS-LDA) (Pudil et al 1994) using tenfold cross-validation. A maximum of ten

features were selected for the ECG data set and EEG data set II and a maximum of five features

were selected for EEG data set I. The number of features used was based upon our preliminary

studies which investigated the convergence of classification accuracy.

It should be noted that our primary aim in this study was to make a direct comparison

between the separability of linear and nonlinear features using individual and combined

feature sets. Therefore, we have utilized the LDA classifier as it is more robust compared to

its nonlinear counterparts such that it has a low computational complexity and is less prone to
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Table 1. LDA classification results for nonlinear dynamic features—ECG.

FNN&MMI FNN&AC Minimum NLPE Exhaustive search

Feature

name Accuracy Lead Accuracy Lead Accuracy Lead Accuracy m τ Lead

cX 47.33 2 39.89 1 44.89 3 53.22 2 6 2

CD 43.89 3 44.44 3 41.78 1 47.44 4 8 1

LLE 62.89 3 63.56 3 48.44 3 66.56 5 10 3

APEN 58.78 3 57.78 3 61.89 3 67.44 2 10 3

NLPE 48.67 3 51.78 3 48.89 3 57.56 10 6 3

overfitting (Muller et al 2003). It is likely that the use of different classifiers (i.e. nonlinear)

might bring further improvement to the classification accuracy. The use of different classifiers

for testing separability of these feature sets will be addressed in our future works.

4. Results and discussion

4.1. ECG data set

The separability of nonlinear features that involved state space reconstruction (cX, CD, LLE,

APEN and NLPE) was investigated using three different embedding parameter selection

methods. The first method was false nearest neighbors and minimum mutual information

(FNN&MMI) which yielded an embedding dimension of m = 5 and time lag of τ = 8. The

second method was false nearest neighbors and first zero crossing of autocorrelation function

(FNN&AC), yielding an embedding dimension of m = 7 and time lag of τ = 9. The third

method was minimum NLPE that estimates the embedding parameter pairs by minimization

of NLPE; this method gave an embedding dimension of m = 8 and time lag of τ = 1. The

best accuracy of each feature among three recording leads is presented with corresponding

parameter selection methods in table 1. Additionally, an exhaustive search was performed on

the class separability of nonlinear features that were estimated with embedding dimension, m,

of 2 through 10 and time lag, τ , of 1 through 10. The embedding parameters and lead giving

the best classification accuracy for each feature is also presented in table 1.

Estimation of the HURST feature does not require any parameter selection and the REV

feature only involves selection of time lag. An accuracy of 46.55% was obtained from lead 2

with the HURST exponent and an accuracy of 43.89% was obtained from lead 1 with the REV

feature. The optimal time lag leading to highest accuracy was τ = 1 for the REV feature.

The separability of AR features was investigated with model order 1 through 10. Using

both AR reflection coefficients and model coefficients, an accuracy of 51.22% was obtained

from lead 2 with an order of 1.

The results demonstrated that the best overall accuracy of 67.44% was obtained from the

APEN feature with exhaustive search. The LLE feature with exhaustive search also provided

an accuracy of 66.56% which was comparably good. Among the nonlinear features that

employ embedding parameter selection methods, the best class separabilities of 62.89% and

63.56% were obtained from the LLE feature using parameters estimated with FNN&MMI and

FNN&AC methods and an accuracy of 61.89% was obtained from the APEN feature using

parameters estimated with the minimumNLPEmethod. The rest of the features provided poor

classification accuracies. The findings show that the selection of embedding parameters is an



10 T Balli and R Palaniappan

Figure 2. The classification accuracy versus embedding dimension and the classification accuracy

versus time lag for three class ECG beats.

Table 2. SFFS-LDA classification results for combined feature sets—ECG.

FNN&MMI FNN&AC Minimum NLPE Exhaustive search

Accuracy Accuracy Accuracy Accuracy m τ

80.22 77.11 84.89 88.00 10 10

important factor in the characterization ability of nonlinear features. However based on these

results, none of the parameter selection methods can be reported as superior to others for all

features as the parameter pairs that led to best class separability varied among the features.

The separability of three class ECG beats was further assessed using combined linear

and nonlinear feature sets where the complimentary features were chosen using the SFFS

algorithm with LDA. In order to create the feature spaces, the nonlinear features were

extracted using embedding parameter pairs obtained from eachmethod of parameter estimation

(FNN&MI, FNN&AC, minimumNLPEmethods) and combined with ARC and ARK features

(orders 1 through 10) generating three independent feature sets which were searched for

complimentary features. An exhaustive search was also performed on the nonlinear feature

space. Ninety feature sets were generated where nonlinear features were estimated using

embedding parameter pairs over embedding dimensions, m, of 2 through 10, and time lag, τ ,

values from 1 to 10. Each feature set also included ARC and ARK features (orders 1 through

10). The best classification accuracy among the SFFS-LDA results of 90 feature sets that were

searched through is presented.

The results of SFFS-LDA classification with combined linear and nonlinear feature sets

are shown in table 2. Combined linear and nonlinear features demonstrate a clear improvement

in the class separability with all of the embedding parameter selection methods. Based on

these results the minimum NLPE method could be accepted as superior to the conventional

methods of embedding parameter selection, FNN&MMI and FNN&AC.

It should be noted that, the exhaustive search is a computationally expensive method of

parameter selection; here, we have employed this method in order to investigate the highest

and the lowest limit of class separability using nonlinear features estimated with different

embedding parameter pairs. Figure 2 shows embedding dimension versus classification

accuracy and also time lag versus classification accuracies for combined feature sets. The
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error bars were obtained by calculating the mean and the standard deviation of all accuracies

with time lags of 1 through 10 for the corresponding embedding parameter for embedding

dimension versus classification accuracy graph and vice versa. Figure 2 demonstrates that

the selection of time lag and embedding dimension parameters is crucial for obtaining

higher classification accuracies with combined feature sets as well. While the embedding

dimension does not seem to have a significant effect on the classification accuracy, the

smaller time lag values seem to be better for obtaining higher classification accuracies for this

data set.

4.2. EEG data set I

The results of LDA classification for finger-movement versus idle state EEG segments are

shown in table 3. For each subject, the best classification accuracy among linear and nonlinear

features along with corresponding feature name, electrode site and parameters is presented.

The embedding dimension and time lag pairs were estimated individually for the subjects.

The FNN&MI and FNN&AC methods led to the same embedding parameter pairs for all

subjects. The embedding dimension was set to m = 4 for subject 10 and it was set to m = 5

for the rest of the subjects; time lag was set to τ = 2 for subject 8, τ = 3 for subjects 4 and

7, τ = 4 for subjects 1, 2, 3, 9, and τ = 5 for subjects 5 and 6 using both FNN&MI and

FNN&AC methods. The minimum NLPE method gave an embedding dimension of m = 8

and time lag of τ = 1 for all subjects.

The class separabilities of the best linear features were found to be significantly better

than the best nonlinear features estimated with FNN&MMI, FNN&AC and minimum NLPE

methods (paired t-test, df = 11, p > 0.05). Furthermore, the class separabilities obtained

through nonlinear features with exhaustive search were found to be significantly better than the

separability of nonlinear features estimated with FNN&MMI, FNN&AC and minimumNLPE

methods (paired t-test, df = 11, p < 0.005) which was expected as the embedding parameter

pair leading to highest class separability was selected using exhaustive search. However,

no significant differences were found between nonlinear features with exhaustive search and

linear features (paired t-test, df = 11, p > 0.05).

The separability of movement versus idle state EEG segments was further assessed

using combined linear and nonlinear feature sets where the complimentary features were

selected with the SFFS algorithm using LDA. The feature sets for each subject were created

using ARC and ARK features (orders 1 through 10) combined with nonlinear features

generated using embedding parameter pairs estimated by one of the parameter selection

methods (FNN&MI/FNN&AC, minimum NLPE). This led to two independent feature sets to

search through. Also an exhaustive search was performed by creating 90 independent feature

sets to be searched using nonlinear features estimated with embedding dimension, m, of 2

through 10 and time lag, τ of 1 through 10, combined with ARC and ARK features (orders 1

through 10).

The class separability with combined feature sets using LDA classification is shown in

table 4. In order to test the significant improvements between class separability across subjects

for combined and individual features, a paired t-test with one tail was performed. The results

showed a significant improvement in class separation across subjects for combined feature sets

with FNN&AC, FNN&MMI, minimum NLPE and exhaustive search compared to best linear

features (paired t-test, df = 11, p < 0.001). Also there were significant differences between

the class separability of best nonlinear features estimated with FNN&AC and FNN&MMI

and combined linear and nonlinear features with FNN&AC and FNN&MMI (paired t-test,

df = 11, p < 0.001); best nonlinear features estimated with minimum NLPE and combined
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Figure 3. The classification accuracy versus embedding dimension for finger-movement EEG.

Table 4. SFFS-LDA classification results for combined feature sets—finger-movement EEG.

FNN&MMI - FNN&AC Minimum NLPE Exhaustive search

Subject no Accuracy Accuracy Accuracy m τ

1 71.13 71.13 71.25 10 10

2 76.73 76.28 77.21 5 5

3 60.10 61.77 62.37 9 1

4 71.92 72.41 73.04 9 3

5 61.84 62.46 63.02 10 1

6 92.51 91.78 92.67 3 5

7 64.75 64.40 65.43 4 6

8 59.44 59.38 60.60 2 8

9 69.33 69.44 70.35 9 6

Mean± Std 69.75± 10.37 69.89± 9.93 70.66± 9.93

linear and nonlinear features with minimum NLPE (paired t-test, df = 11, p < 0.001); best

nonlinear features with exhaustive search and combined linear and nonlinear features with

exhaustive search (paired t-test, df = 11, p < 0.001).

Furthermore, the results have shown that there were no significant differences between

the class separability of minimumNLPE, FNN&MI/FNN&AC and exhaustive search methods

(paired t-test, df = 11, p > 0.1). Figures 3 and 4 demonstrate the embedding dimension

versus classification accuracy and time lag versus classification accuracy for subjects 1–3. The

graphs show that the amount of deviation in the classification accuracy based on embedding

dimension and time lag is approximately 2%. These findings are consistent with subjects 4–9

as well. The results based on finger-movement EEG data set suggest that while the selection

of embedding parameters were highly subject and feature dependent in the case of individual

features, the selection of these parameters becomes less crucial with the use of combined

linear and nonlinear feature sets.

4.3. EEG data set II

The results of nonlinear features that involved state space reconstruction are presented in

table 5. Embedding parameter pairs for estimation of nonlinear features were set to m = 6,
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Figure 4. The classification accuracy versus time lag for finger-movement EEG.

Table 5. LDA classification results for nonlinear dynamic features—epileptic EEG.

FNN&MMI FNN&AC Minimum NLPE Exhaustive search

Feature names Accuracy Accuracy Accuracy Accuracy m τ

cX 27.73 26.75 20.60 40.08 2 8

CD 38.10 34.48 35.00 39.20 4 3

LLE 38.00 20.75 28.30 48.38 7 3

APEN 39.75 38.10 42.00 48.00 2 1

NLPE 50.88 50.92 40.48 53.10 2 1

τ = 6, using the FNN&MMI method; m = 6, τ = 10, using the FNN&AC method and

m = 10, τ = 1, using the minimum NLPE method. The maximum class separability obtained

through exhaustive search is also presented with corresponding embedding parameter pairs

for each feature.

The Hurst exponent gave an accuracy of 40.72% and the REV feature gave an accuracy of

33.87%. The optimal time lag that led to highest accuracy using the REV feature was τ = 1.

Using linear features, an accuracy of 74.78% and 48.25% was obtained with AR model

coefficients (order 10) and AR reflection coefficients (order 3), respectively.

Overall results demonstrate that the highest accuracy of 74.78% was obtained with ARC

featureswhilst theARK features and nonlinear features provided poor classification accuracies.

Class separability of nonlinear features presented in table 5 shows that none of the embedding

parameter selection methods could consistently provide the best accuracy for all features. The

results of exhaustive search also demonstrate that the parameter pairs that led to highest class

separability were variable among features.

The classification accuracies obtained with combined linear and nonlinear features are

shown in table 6. The feature sets that were searched through were created using four different

settings which was explained in section 4.1. For this data set the use of combined linear and

nonlinear features led to an improved class separability of 81.40% through exhaustive search.

The separability of combined features that employed embedding parameter selection methods

for nonlinear features was also comparable to the exhaustive search. Figure 5 demonstrates

the embedding dimension versus classification accuracy and time lag versus classification

accuracy graphs obtained through exhaustive search. The graphs illustrate that all of the

embedding parameter pairs provide comparable classification accuracies (±2%) for combined
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Figure 5. The classification accuracy versus embedding dimension and the classification accuracy

versus time lag for five class EEG.

Table 6. SFFS-LDA classification results for combined feature sets—epileptic EEG.

FNN&MMI FNN&AC Minimum NLPE Exhaustive search

Accuracy Accuracy Accuracy m τ Accuracy

80.58 80.25 80.67 7 5 81.40

Table 7. Estimated computation time for each feature.

Feature name Estimated time (ms)

APEN 41.24

CD 42.51

HURST 12.32

cX 0.34

REV 0.43

NLPE 62.60

LLE 108.55

AR 2.31

linear and nonlinear feature sets. This implies that the selection of the embedding parameter

and time lag did not have a significant effect on the separability of combined feature sets for

this data set.

4.4. The applicability of linear and nonlinear features for real-time processing

The estimated computation time for extraction of each feature is listed in table 7. These

time measures were obtained by running the algorithms on MATLAB (R2009b) using a dual

core computer with 2.00 GHz processing speed. Algorithms were run using a sample signal

selected from EEG data set I, with a window length of 256 data points. Embedding dimension

and time lag parameters for nonlinear features were selected as estimated parameters using

the minimum NLPE method (see section 4.2). Note that the time measures do not differ

based on different embedding parameter selections. The time measures listed in table 7

illustrate that the estimated computation time of each feature vary based on the complexity
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of the algorithm. The difference in computational time between linear and nonlinear features

was small and negligible considering the improvement in classification accuracy. Overall,

the listed estimated computation times are acceptable for real-time processing of EEG/ECG

signals. It should be noted that the algorithms for nonlinear features were implemented by

the authors and the features were estimated with personal computers. Thus, in the case of

real-time design and implementation, the algorithms could be further improved in terms of

processing time. Besides use of the dedicated hardware (in a real-time system) for extraction

of these features would also bring improvement to the processing times.

5. Conclusion

In this study the characterization ability of linear AR features and nonlinear features was

investigated using three data sets composed of ECG, epileptic EEG and finger-movement

EEG signals. The linear and nonlinear features were tested by assessing their ability to

differentiate between different classes of data.

On their own, the linear and nonlinear features provided comparable results with ECG and

finger-movement EEG data sets whilst the linear features provided a better class separability

with the epileptic EEG data set. Furthermore, the parameter selection methods and exhaustive

search on the parameter space for estimation of nonlinear features demonstrated that the

optimal embedding dimension and time lag pairs that provide highest class separability were

feature dependent. This implies that none of the parameter selection methods can be proposed

as superior to others for all features.

The results based on combined linear and nonlinear features demonstrated significant

improvements in the class separability for all of the data sets. Furthermore, no significant

differences were found between the class separabilities of combined linear and nonlinear

feature sets where the nonlinear features were estimated with embedding parameters generated

by FNN&AC, FNN&MI and minimum NLPE methods for finger-movement and epileptic

EEG segments. In other words, the class separabilities of combined feature sets in which

the embedding parameters for estimation of nonlinear features were investigated through

exhaustive search have shown that the selection of embedding parameter pairs does not

have significant effect on class separability. This is true for both epileptic EEG and finger-

movement EEG data sets where the variability of class separation was approximately 2% with

all combinations of embedding parameter pairs. For the ECG data set, the results has shown

that the use of the minimum NLPE method provided comparable results to the highest class

separability obtained through exhaustive search.

Furthermore, variability in the class separabilities based on different data sets could be

related to the nature of the time series. In our previous studies, we have shown that the

indications of nonlinearity in the EEG and ECG data sets vary depending on the features

utilized to investigate nonlinearity and also depending on different classes of the data sets.

In other words, different nonlinear features are able to characterize different properties of the

signals on varying rates. This is directly related to the discrimination ability of these features

on the corresponding time series. Therefore, it could be concluded that the varying class

separabilities based on different data sets might be dependent on the linear or nonlinear nature

of time series in the corresponding data set. The relationship between the characterization

ability of different nonlinear features and the nature of the signals will be further explored in

our future works.

Overall findings suggest that the utilized linearAR features and nonlinear dynamic features

are complimentary features that quantify different properties of the corresponding EEG and

ECG signals, providing an improved class separability compared to individual features.
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