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In this paper, Principal Component Analysis (PCA) is used to reduce noise from multi-channel Visual
Evoked Potential (VEP) signals. PCA is applied to reduce noise from multi-channel VEP signals because
VEP signals are more correlated from one channel to another as compared to noise during visual perception.
Emulated VEP signals contaminated with noise are used to show the noise reduction ability of PCA. These
noise reduced VEP signals are analysed in the gamma spectral band to classify alcoholics and non-alcoholics
with a Fuzzy ARTMAP (FA) neural network. A zero phase Butterworth digital filter is used to extract
gamma band power in spectral range of 30 to 50 Hz from these noise reduced VEP signals. The results using
800 VEP signals give an average FA classification of 92.50% with the application of PCA and 83.33% without
the application of PCA.
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1. INTRODUCTION

Evoked potential is typically generated in response
to external stimulus. The application of sensory stimu-
lus like visually seeing a set of pictures gives rhythmic
Visual Evoked Potential (VEP), which is the coupled
and coherent activity of an ensemble of neuronal gener-
ators in the brain (2) Over the years, VEP analysis has
become very useful for neuropsychological studies and
clinical purposes (8). Specifically, the effects of alcohol
on the central nervous system of humans and genetic
predisposition towards alcoholism have been studied us-
ing evoked responses (12) (3).
The VEP signal is embedded in the ongoing electroen-

cephalogram (EEG) with additive noise causing diffi-
culty in detection and analysis of this signal. The tra-
ditional technique of reducing this EEG contamination
is to use ensemble averaging (1). However, this approach
requires many trials and the averaged signal might tend
to smooth out inter-trial information. Furthermore, it
leads to system complexity and higher computational
time.
In this paper, a zero phase Butterworth digital filter

is used to extract gamma band spectral power of sin-
gle trial VEP signals buried in the spontaneous EEG
activity. Our method assumes that the ratio of VEP
to EEG is higher in the gamma band range, thereby
circumventing methods like signal averaging to improve
the VEP/EEG ratio. This assumption follows research
of single trial gamma band VEP signals used to study
stimulus specificity of visual responses in humans (11).
In addition, it is reported that gamma band spectra
centred at 40 Hz is evoked during the application of

sensory simulation (2).
Principal Component Analysis (PCA) is a technique

commonly employed to reduce the dimension of the fea-
ture set (5). In this paper, PCA is applied to reduce
noise effects in VEP. VEP signals are more correlated
from one channel to another as compared to noise dur-
ing visual perception. As such, PCA which uses eigen
analysis of data covariance matrix can be applied to
reduce noise in VEP signals.
Parseval’s theorem is used to obtain the spectral

power of the filtered signal in time domain. Since the
entire computation of the features remain in time do-
main, this method is efficient than methods requiring
power spectrum computation like periodogram analy-
sis. The extracted spectral power values are used to
classify alcoholics and non-alcoholics using a simplified
Fuzzy ARTMAP (FA) neural network (NN) classifier
developed by Kasuba (6).

2. NOISE REMOVAL USING PCA

PCA (5) is applied to remove noise from the VEP data.
The extracted VEP signals consist of two parts: signal
and noise. Therefore, using PCA, it is possible to sep-
arate noise from signal using the fact that the noise
subspace will constitute of principal components (PCs)
with eigenvalues chosen below a certain threshold and
eigenvalues with PCs above this threshold represent the
signal subspace. Assuming matrix x to represent the ex-
tracted noise corrupted VEP signal, the covariance of
matrix x is computed using:

R = E(xxT ) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(1)
Next, matrices E and D, are computed where E is
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Fig. 1. Emulated VEP signals

the orthogonal matrix of eigenvectors of R and D is the
diagonal matrix of its eigenvalues, D = diag(d1, ..., dn).
The PCs can now be computed using

y = ET xT · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2)
In this work, Kaiser’s rule is used to give the num-

ber of required PCs (5). Using this method, PCs with
eigenvalue more than 1.0 are considered to be part of
the signal subspace. The signal part of the EEG can
now be reconstructed from the selected PCs using

x̃ = Êŷ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)
where Ê and ŷ are the eigenvectors and PCs corre-

sponding to eigenvalues less than 1.0.
2.1 Simulation Study A simulation study is

conducted using emulated VEP signals contaminated
with noise. The study is used to show that PCA
could considerably reduce noise effects from the em-
ulated VEP signals. VEP signal is emulated using a
combination of 5 randomly selected waveforms from 6
basic waveforms, each with different frequency and am-
plitude. The emulated VEP signals are later normalised
to zero mean and unit variance. The basic waveform
equation is:

G(n) = Asin(
2πnf

fs
) · · · · · · · · · · · · · · · · · · · · · · · · (4)

where f is the frequency in the gamma band range
(randomly selected from 30-50 Hz), fs is the sampling
frequency (256 Hz), and A is the amplitude of the sig-
nal. The amplitude is chosen randomly in the range
of 20 ∼ 30 units. This variation in the amplitude and
frequency are to emulate the real VEP signals. Some of
the emulated VEP signals are shown in Figure 1.
The noise is constructed using whitening method,

which is as follows. EEG signals are extracted while

Fig. 2. Whitened noise signals

the subjects are at rest. These signals are first cen-
tred to remove the mean and then whitened to remove
correlation between its components and to achieve unit
variance. Assuming matrix z to represent the extracted
signal, whitening seeks to obtain noise matrix z̃, where
the covariance of matrix z̃ equals the identity matrix:

E(z̃z̃T ) = I · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(5)
A common whitening method is to use the eigen-

value decomposition of the covariance matrix E(z̃z̃T ) =
EDET , where E is the orthogonal matrix of eigenvec-
tors of E(z̃z̃T ) and D is the diagonal matrix of its eigen-
values, D = diag(d1, ..., dn). Whitening can now be
achieved using

z̃ = ED− 1
2 ET z · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(6)

Some of the whitened noise signals are shown in Fig-
ure 2.
The VEP signal with noise artifact can now be con-

structed using

x(n)noise+V EP = x(n)V EP + x(n)noise · · · · · · · (7)
The signal to noise (SNR) of VEP signal is set ap-

proximately to -9 dB, i.e. the signal level is approxi-
mately 1/3 of the noise level. Sixty-one emulated VEP
signals contaminated with noise are created and PCA
is applied. Using Kaiser’s rule, the number of PCs to
reconstruct the data can be determined. Kaiser’s rule
is more suitable for automated procedures as compared
to other methods like scree graph test since it does not
involve manual inspection. Using this method, the first
6 PCs are selected for reconstruction.
The first column of Figure 3 shows the emulated VEP

signals. The noise contaminated VEP signals are shown
in the second column while the third column shows the
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Table 1. SNR values of VEP signals in the simu-
lation study

SNR

Signal Without PCA With PCA SNR improvement

1 -8.64 -4.35 4.29

2 -9.31 -4.27 5.04

3 -8.80 -4.27 4.52

4 -9.31 -4.73 4.58

5 -8.34 -4.17 4.16

6 -9.46 -4.35 5.11

7 -9.04 -4.35 4.69

8 -9.40 -4.64 4.76

9 -8.68 -4.35 4.33

10 -9.31 -4.51 4.80

Average -9.03 -4.40 4.63

VEP signals with noise reduced by PCA. From the fig-
ure, it be seen that PCA has considerably reduced noise
effects from the VEP signals. To further validate the
ability of PCA to reduce noise, Table 1 lists the SNR
values of noise corrupted VEP and noise reduced VEP
signals. The table also shows the SNR improvement
after using PCA. Due to space constraints, only values
from 10 VEP signals are given, but there are improve-
ments in SNR for all the 61 VEP signals.

3. VISUAL EVOKED POTENTIAL DATA

In this section, the experimental set-up used to record
the VEP data is discussed. In addition, pre-processing
methods to remove VEP signals with eye blink artifact
and setting the pre-stimulus baseline of these signals
to zero are described. Twenty subjects participated in
the experimental study to record the VEP data that
consisted of 10 alcoholics and 10 non-alcoholics. The
alcoholics are non-amnesic and have been abstinent for
a minimum period of one month (through closed ward
hospitalisation) and are also off all medications for the
same period of time. Most alcoholics have been drinking
heavily for a minimum of 15 years and started drinking
at approximately 20 years of age. The non-alcoholic
subjects are not alcohol or substance abusers.
The subjects are seated in a reclining chair located in

a sound attenuated RF shielded room. Measurements
are taken from 64† channels placed on the subject’s
scalp, which are sampled at 256 Hz. The electrode posi-
tions (as shown in Figure 4) are located at standard sites
using extension of Standard Electrode Position Nomen-
clature, American Encephalographic Association. The
signals are band-pass filtered between 0.02 and 50 Hz
using analogue filters.

3.1 Snodgrass and Vanderwart Picture Stim-
uli The VEP data is recorded from subjects while
being exposed to a stimulus, which is a picture of an
object chosen from Snodgrass and Vanderwart picture
set (10). These pictures are common black and white
line drawings like airplane, banana, ball, etc. executed
according to a set of rules that provide consistency of
pictorial representation. The pictures have been stan-
dardised on variables of central relevance to memory
†In all the experiments in this paper, 3 channels are used as refer-
ences. Therefore, only 61 channels are used as active channels.

Fig. 4. Electrode positions

Fig. 5. Some objects from Snodgrass and Vander-
wart picture set

Fig. 6. Example of stimulus presentation

and cognitive processing. These pictures represent dif-
ferent concrete objects, which are easily named i.e. they
have definite verbal labels. Figure 5 shows some of these
pictures. One-second measurements after each stimulus
onset are stored. Stimulus duration of each picture is
300 ms with an inter-trial interval of 5.1 s. The pictures
are shown using a computer display unit located 1 meter
away from the subject’s eyes. Figure 6 shows an illustra-
tive example of the stimulus presentation. For further
details of the data collection process, refer to (12).

3.2 VEP pre-processing A common artifact
that corrupts the visual stimulus EEG data is eye
blinks. VEP signals with eye blink artifact contami-
nation are removed using a computer program written
to detect VEP signals with magnitudes above 100 mV.
These VEP signals detected with eye blinks are then
discarded from the experimental study and additional
trials are conducted as replacements. The threshold

電学論 C，122巻 3 号，平成 14 年 3



(a) (b) (c)

Fig. 3. VEP signals (a) emulated (b) with noise (c) with noise reduced by PCA

value of 100 mV is used since blinking produces 100-200
mV potential lasting 250 milliseconds (7). Mean from
the data are removed. This is to set the pre-stimulus
baseline to zero (9).

4. CLASSIFICATION OF VEP SIGNALS

This section discusses the VEP signal classification
by Fuzzy ARTMAP (FA) into two categories: alcoholic
and non-alcoholic. The VEP feature extraction is de-
scribed before describing FA classification. The classi-
fication experiments are conducted using the extracted
VEP with and without the application of PCA.

4.1 VEP feature extraction A total of 40 ar-
tifact free trials for each subject are used in the ex-
perimental study giving a total of 800 VEP signals. A
10th order forward and 10th order backward Butter-
worth digital filter (forward and backward operation to
give zero phase response) is used to extract the VEP in
the 3-dB passband of 30 to 50 Hz. Order 10 is chosen
since it gives a 30-dB minimum stopband at 25 and 55
Hz. Parseval’s theorem can now be applied to obtain
the equivalent spectral power of the signal, x̃ using

SpectralPower =
1
N

N∑

n=1

[x̃(n)]2 · · · · · · · · · · · · · (8)

where N is the total number of data in the filtered
signal. The power values from each of the 61 channels
are concatenated into one feature array representing the
particular VEP pattern. Figure 7 shows the process of
extracting features from VEP signals for the case of
using PCA. The VEP feature extraction without the
application of PCA is the same as shown in Figure 7
except that PCA is not used.

4.2 Classification These VEP feature arrays
are classified by FA into alcoholic and non-alcoholic cat-
egories. FA is chosen as compared to other NN due to
its high speed training ability in fast learning mode.
Half of the patterns are used for training while the rest
half are used for testing. FA fast learning weight up-
dates vary with different order of input patterns during
training. As such, classification performance will vary.
This problem is solved using voting strategy (4) with 10
runs. FA vigilance parameter (VP) is varied from 0 to
0.9 in steps of 0.1. Figure 8 shows the FA network archi-
tecture as used in the experimental study. For further
details on FA, refer to (4) (6).
Table 2 shows the results of FA classification with

and without the application of PCA for the varying VP
values. From the table, it can be seen that FA classifica-
tion improves considerably with the use of PCA. This is
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Fig. 7. Example of stimulus presentation

Fig. 8. FA network as used in the study

because of PCA’s ability to remove noise from the VEP
signals. The best classification using PCA is at 94.75%
(VP=0.8) while averaged classification of 92.5% is ob-
tained across all the VP values. The case without using
PCA gives lower classification values. Best classification
is at 90.25% (VP=0.9) while averaged classification is
at 83.33%.

5. CONCLUSION

In this paper, we have applied PCA to reduce noise

from VEP signals. Emulated VEP signals contaminated
with noise have been utilised to show the ability of PCA
to reduce noise. These noise reduced VEP signals are
classified into alcoholics and non-alcoholics category us-
ing FA. Gamma band power computed from these VEP
signals are used as features by FA. The FA classifica-
tion results show improvement with the application of
PCA to reduce noise in VEP signals as compared to
the case without applying PCA. Overall, the good ac-
curacy of FA classification performances indicates that
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Table 2. FA classification results

Classification (%)

VP With PCA Without PCA

0 91.25 80.25

0.1 92.50 82.50

0.2 93.50 81.50

0.3 92.00 81.75

0.4 90.75 83.50

0.5 90.25 81.00

0.6 94.50 83.75

0.7 91.25 84.50

0.8 94.75 84.25

0.9 94.25 90.25

Average 92.50 83.33

VEP spectral power centred at 40 Hz could be used to
classify alcoholics and non-alcoholics.
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