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Abstract

Conventional regular moment functions have been proposed as pattern sensitive

features in image classi®cation and recognition applications. But conventional regular

moments are only invariant to translation, rotation and equal scaling. It is shown that

the conventional regular moment invariants remain no longer invariant when the image

is scaled unequally in the x- and y-axis directions. We address this problem by pre-

senting a technique to make the regular moment functions invariant to unequal scaling.

However, the technique produces a set of features that are only invariant to translation,

unequal/equal scaling and re¯ection. They are not invariant to rotation. To make them

invariant to rotation, moments are calculated with respect to the principal axis of the

image. To perform this, the exact angle of rotation must be known. But the method of

using the second-order moments to determine this angle will also be inclusive of an

undesired tilt angle. Therefore, in order to correctly determine the amount of rotation,

the tilt angle which di�ers for di�erent scaling factors in the x- and y-axis directions for

the particular image must be obtained. In order to solve this problem, a neural network

using the back-propagation learning algorithm is trained to estimate the tilt angle of the

image and from this the amount of rotation for the image can be determined. Next, the

new moments are derived and a Fuzzy ARTMAP network is used to classify these
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images into their respective classes. Sets of experiments involving images rotated and

scaled unequally in the x- and y-axis directions are carried out to demonstrate the va-

lidity of the proposed technique. Ó 2000 Elsevier Science Inc. All rights reserved.

1. Introduction

High-level image analysis system involves pattern analysis where the auto-
matic recognition of an object in a scene regardless of its position, size and
orientation is an important problem. A number of techniques has been de-
veloped to derive features from an image, which are invariant under transla-
tion, scale change and rotation [1±4]. In particular, the invariant properties of
regular moment functions have attracted many users to utilize them as pattern
features in object recognition, pattern classi®cation and scene matching [3±9].
Hu [4], in his paper on pattern recognition, derived a set of regular moment
invariants based on combinations of regular moments using algebraic invari-
ants. Besides Hu, Bamieh and Figueiredo [12] derived another set of moment
invariants using the theory of algebraic invariants. The main characteristic of
the invariants formulated by Bamieh and De Figueiredo is that the feature
vector size is much lower than any other known invariants, which makes them
computationally cheaper. These regular moments are invariant to changes in
scale, shift, rotation and re¯ection.

Hu [4] and Bamieh and Figueiredo [12] have shown that the moments re-
main invariant when the scale changes in the x and y directions are equal and
the derived features have been used for pattern classi®cation of ship [5] and
other applications [6±10]. In some of the applications the scale changes in the
x- and y-axis directions may not be equal. This could be due to the digital
nature of the imagery caused by under-sampling and digitizing e�ects. Or
possibly the image itself in comparison with the standard image has unequal
scale change in the x- and y-axis directions. So, when the image is an elongated
or compressed version of the original image, as illustrated in Figs. 1(a) and (b),
these moments do not remain invariant.

Fig. 1. (a) Original image f �x; y� and (b) unequally scaled and shifted image of (a).
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We have formed new moments that are invariant to unequal scaling in the x-
and y-axis directions based on the regular moments. However, they are only
invariant to scale, translation and re¯ection. If the scaling constants for the x-
and y-axis directions are equal then rotation invariance can be achieved by
combining the moments based on the theory of algebraic invariance as shown
in [4]. Rotation invariance can also be achieved by knowing the angle of ro-
tation and using the relationship between the rotated image and its original
form to unrotate the image. This angle of rotation is computed by using the
principal axis method [11] using the second-order moments. However, this
method cannot be used for images that are unequally scaled because the angle
of tilt is di�erent if the scale changes in the x- and y-axis directions are not
equal.

So to use the newly derived moments, we have to ®rst achieve invariance to
rotation. This can be done if the angle of rotation for the image is determined.
However, this angle cannot be determined computationally since the angle
obtained using the principal axis method of second-order moments will result
in a combination of the rotational angle plus an additional tilt angle which is
dependent on the x- and y-axis scale factors.

As such the tilt angle for the particular image must be known and this is also
not possible to be computed since the tilt angle will equal the angle obtained
using the principal axis method of second-order moments only if the image is
not rotated. As a consequence, when we are dealing with images that are ro-
tated and unequally scaled, an approximating technique has to be considered
which will give us the value of the tilt angle. The neural network has been used
for this purpose since its parallel architecture and biological structure makes it
extremely e�cient, especially in those areas where it needs to produce ap-
proximations to ill-de®ned problems [14±18]. For example, Fukumi et al. [17]
have used a neural network that consists of two di�erent networks. The ®rst
network is intended to learn and recognize standard patterns, whereas the
second network comes into play only if the ®rst fails to give a good recognition
result. Two di�erent parts use the second network's hidden layer, one part to
perform pattern recognition and the other part to perform rotation angle es-
timation, i.e., it has two properties, rotation-insensitivity and rotation-sensi-
tivity.

In this paper, we have used a more speci®c approach of using a three-layered
neural network trained to estimate the angle of tilt, i.e., the principal axis angle
is obtained when the image is not rotated. The input layer of the neural net-
work is presented with six input features of which four of them are second- and
third-order moments and the remaining two features are the semimajor and
semiminor axis of the image. The back-propagation learning algorithm is used
in training the neural network [19]. We have experimented this method with
images that are unequally scaled, re¯ected and rotated. The scaling constants
for the x and y directions are between 0.8 and 1.2 and the images are rotated
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through 0°, 30°, 60°, 150°, 180°, 225° and 300°. The angle of rotation is
computed by subtracting the tilt angle obtained from the neural network with
the angle computed from an equation involving second-order moments.

Once the image is obtained in its unrotated form, the new moments can be
calculated. Fuzzy ARTMAP [23] is used in classifying these patterns using
these newly derived moments. Fuzzy ARTMAP is used instead of other clas-
si®ers due to its ability to work with minimal training while maintaining a good
classi®cation output and for its quick training.

2. Regular and new moments

The conventional regular moments can be de®ned as

mpq �
Z 1

ÿ1

Z 1

ÿ1
xpyqf �x; y� dx dy for p; q � 0; 1; 2; . . . �1�

In this paper, we limit ourselves to binary images. For binary images f �x; y� is
either 1 or 0. If the region of interest is limited from (x1; y1) to (x2; y2), then we
have

mpq �
Z y2

y1

Z x2

x1

xpyqf �x; y� dx dy: �2�

To make these moments invariants to translation, one can de®ne the central
moments as

lpq �
Z y2

y1

Z x2

x1

�xÿ �x�p�y ÿ �y�qf �x; y� dx dy; �3�

where �x and �y are the coordinates of the centroid given by

�x � m10

m00

; �y � m01

m00

: �4�

Solving for �x and �y and substituting them into (3) gives

lpq �
Z y2

y1

Z x2

x1

x
�
ÿ 1

2
�x1 � x2�

�p

y
�
ÿ 1

2
�y1 � y2�

�q

f �x; y� dx dy: �5�

Using the binomial expansion, (5) can be expressed as

lpq �
�x2 ÿ x1�p�1

p � 1

"
� � � � � Cp

p�x2 ÿ x1�
�
ÿ 1

2
�x1 � x2�

�p
#

� �y2 ÿ y1�q�1

q� 1

"
� � � � � Cq

q�y2 ÿ y1�
�
ÿ 1

2
�y1 � y2�

�q
#
: �6�
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These moments are made invariant to scale change as proposed in [4] by

gpq �
lpq

l�p�q�2�=2
00

: �7�

Now, consider the unequally scaled image shown in Fig. 1(b). Assume that the
expansion in the x and y directions to be a and b, respectively. The central
moments can now be de®ned as

~lpq �
aq�1�x2 ÿ x1�p�1

p � 1

"
� � � � � Cp

p�x2 ÿ x1�a 1

2
�av1 � av2�p

#

� bq�1 �y2 ÿ y1�q�1

q� 1

"
� � � � � Cq

q�y2 ÿ y1�b 1

2
�by2 � by1�q

#
: �8�

Evaluating (8) further, the central moments can be expressed in terms of the
original moments as

~lpq � ap�1bq�1lpq: �9�
If now (7) is evaluated for the unequally scaled image shown in Fig. 1(b) and
expressing in terms of the original image, then we have

~gpq �
b
a

� ��qÿp�=2

gpq: �10�

In order to form moment invariants when a 6� b, let us consider the following:

kpq �
gpq

gp�1;q�1

�11�

and

~kpq �
~gpq

~gp�1;q�1

; �12�

where once again `�' refers to moments evaluated for unequally scaled image
as shown in Fig. 1(b). Substituting (10) into (12), it is evident that ~kpq � kpq, for
p; q � 0; 1; 2; . . . ; thereby giving us moment invariance even when a 6� b.

3. Experimental results for scale invariance and re¯ection

The images shown in Table 1 are drawn onto a 512� 512 grid. An image `4'
is considered and the moments for this image are evaluated and tabulated in
row 2 of Table 1. Similarly, the moments for unequally scaled and shifted
images for various values of and are evaluated. These results are tabulated in
rows 3±7 of Table 1. The close agreement obtained in each of these columns
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veri®es the correctness of the proposed technique. The reason for not obtaining
exact invariance in each column is that the image function is discrete rather
than continuous. Since in the foregoing analysis, no assumption was made
regarding the values that a or b may assume, we may allow them to become
negative. This evidently treats the appropriate mirror re¯ections and the results
are tabulated in Table 2. Once again, the constancy of values obtained in each
of the columns demonstrates the validity of the proposed scheme.

4. Rotation property of regular moments

The new regular moments kpq are invariant under changes of size, transla-
tion and re¯ection but they are not invariant to rotation. In this section, we will
discuss the rotational property of the regular moments as a basis for the
forthcoming sections. Let us assume that the coordinate origin has been chosen
to coincide with the image centroid. The central moments lpq in the polar form
are

Table 1

New moments for equally and unequally scaled images

6 P. Raveendran et al. / Information Sciences 000 (2000) 000±000
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lpq �
Z 1

ÿ1

Z 1

ÿ1
�r cos h�p�r sin h�qf �r; h�r dr dh; �13�

where x � r cos h and y � r sin h and the Jacobian of the transformation is r.
Now, consider that the image has rotated through an angle /. If the rotated

image is denoted by fr, the relationship between the original and the rotated
image in the same polar coordinates is

fr�r; h� � f �r; hÿ /�: �14�
By a change of variable / � hÿ /, the moments for the rotated image lr

pq are

lr
pq �

Z 1

ÿ1

Z 1

ÿ1
�r cos�/� u��p�r sin�/� u��qrf �r;u� dr du: �15�

A relationship between the original image lpq and the rotated image lr
pq can be

established by expanding (15) and expressing it in terms of the moments of the
original image. If the image rotates through an angle /, the moments change
according to

lr
pq �

Xp

r�0

Xq

s�0

�ÿ1�qÿs p
r

� �
q
s

� �
�cos /�pÿr�s�sin /�q�rÿs�lp�qÿrÿs;r�s�:

�16�
The angle of rotation, /, plus the tilt angle, w, is determined by using the
principle axis method using the second-order moments [11]. The angle /� w is
computed from

Table 2

New moments for re¯ected images
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/� w � 1

2
tanÿ1 2l11

l20 ÿ l02

: �17�

By knowing how much an image has rotated from its original form and by
using (18) in the following, only the unequal/equal scaling constants in the x
and y directions are left, which can be eliminated by using (11). A neural
network is trained to give us the tilt angle, w, which can be subtracted from (17)
to give us the angle of rotation, /. With this angle and using

lur
pq �

Xp

r�0

Xq

s�0

�ÿ1�p�qÿr p
r

� �
q
s

� �
�cos /�pÿr�s�sin /�q�rÿs�lp�qÿrÿs;r�s�;

�18�
where lur

pq is the moment function that is invariant to rotation, we can derive
moments for the unrotated image. Using (7) and (11) next will result in a new
set of moments that are invariant to translation, rotation and equal/unequal
scaling.

5. Rotation angle from neural network

The new moments derived in Section 2 are invariant to translation, re¯ection
and most importantly invariant to scale changes independent of whether it is
equal or unequal. But as mentioned, they are not invariant to rotation and an
approximation technique has to be developed to ensure that the image is made
to be invariant to rotation. The computation of second-order regular moments
from (17) gives an angle that consists of the tilt angle, which is inherent in the
image and dependent on the scale factors of x- and y-axis and the angle of
rotation, if the image is rotated. If the image is not rotated, then the tilt angle
will be equal to the computed angle from (17). Fig. 2 shows an image (without

Fig. 2. (a) An image encircled by an ellipse and (b) semimajor, semiminor and tilt angle of the

image in (a).
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rotation) encircled by an imaginary ellipse, which serves to better illustrate the
concept of the tilt angle.

The problem with rotation arises because the unequal scaling of an image in
the x- and y-axis causes the angle of tilt to be di�erent from its original image
and also the result obtained by computing the angle using (17) does not in-
dicate if the image is rotated. To solve this problem, a relationship between the
standard image and the unequally scaled and rotated image has to be estab-
lished. A neural network can be used to solve this problem by estimating the
tilt angle and from this the amount of rotation for the particular image can be
established. Once this is accomplished, the moments for the unrotated image
can be obtained where (7) and (11) can be applied to obtain invariance to
rotation, translation and equal/unequal scaling.

To measure the tilt angle, a multiplayer perceptron neural network is im-
plemented for this purpose. The neural network, as shown in Fig. 3, is trained
to generate the tilt angle of the image in concern. The neural network uses two
second-order and two third-order moments as inputs together with another
two values of a and b which serve as representations of the semimajor and
semiminor axis of the image. The values of aand b are calculated from

a �
l20 � l02 � �l20 ÿ l02�2 � 4l2

11

h i1=2

l00=2

264
375

1=2

and

b �
l20 � l02 ÿ �l20 ÿ l02�2 � 4l2

11

h i1=2

l00=2

264
375

1=2

:

�19�

Fig. 3. Neural Network model used to predict tilt angle, w.
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The target value of each pattern presented to the neural network is the tilt
angle and is determined from (17) for an unrotated image. Usage of a and b is
needed in reducing the training time of the neural network. This is due to the
images that are scaled equally in the x and y directions but di�erent scale
factors would produce di�erent second-order moments, however the target
(i.e., the tilt angle) would remain the same and this causes confusion for the
neural network while training. With the additional values of a and b, which do
not change for equal scaling, the neural network converges faster. The back-
propagation algorithm is used to train the neural network [19].

Each input is normalised from 0 to 1 to avoid any of them to dominate over
the neural network training process. An important fact to note here is that
these input features are not invariant to unequal scaling since we need the
variance to exist in order to train the neural network to predict the tilt angle,
which varies for di�erent unequal scale factors for di�erent images. The output
tilt angle is also normalised in the same range to speed up the training process.
The predicted tilt angle from the neural network is then renormalized to give us
the tilt angle in degrees. The topology of the network is ®xed at 6:25:1, i.e., 6
input units, 25 hidden units and a single output unit. The training is conducted
until the error in the normalised tilt angle prediction is less than 0.001. The
learning rate begins at 0.5 and is reduced with increasing iterations to avoid
large oscillations during training. In addition, a momentum value of 0.3 is also
used to control the oscillations during training. These parameters were chosen
after some preliminary trial runs. Once the output of the net is obtained, the
angle of rotation from the x- and y-axis can be determined and hence the image
can be obtained in its unrotated form. Next, we can apply the methods dis-
cussed in the previous sections to arrive at moments that are invariant to
translation, rotation and equal/unequal scaling.

In Section 6, we will discuss Fuzzy ARTMAP [23] network, which is used to
classify the images using the newly derived moments to con®rm the validity of
the proposed method.

6. Fuzzy ARTMAP

ARTMAP is a class of neural network that performs incremental supervised
learning of recognition categories in response to input vectors presented in an
arbitrary order [20]. Earlier adaptive resonance theory models like ART1 and
ART2 consisted of unsupervised learning systems [21,22]. In this paper, a more
general ARTMAP system known as Fuzzy ARTMAP is used [23]. This system
learns to classify inputs by using fuzzy set features, i.e., the input features are
represented by their corresponding membership values from 0 to 1 indicating
the extent to which each feature is present. This generalization is accomplished

10 P. Raveendran et al. / Information Sciences 000 (2000) 000±000
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by replacing the ART1 module of the binary ARTMAP system with Fuzzy
ART modules.

Fuzzy ARTMAP incorporates fuzzy set theory in its computation and as
such it is able to learn stable responses to either analog or binary valued input
patterns. It consists of two Fuzzy ART modules (Fuzzy ARTa and Fuzzy
ARTb) that create stable recognition categories in response to sequence of
input patterns. During supervised learning, Fuzzy ARTa receives a stream of
inputs features representing the pattern and Fuzzy ARTb receives a stream of
inputs representing the target class of the pattern. An Inter ART module links
these two modules, which is actually an associative controller that creates a
minimal linkage of recognition categories between the two Fuzzy ART mod-
ules to meet a certain accuracy criterion. This is accomplished by realizing a
rule that minimizes predictive error and maximizes predictive generalization. It
works by increasing the vigilance parameter qa of Fuzzy ARTa by a minimal
amount needed to correct a predictive error at Fuzzy ARTb.

Parameter qa calibrates the minimum con®dence that Fuzzy ARTa must
have in a recognition category, or hypothesis that is activated by an input
vector in order for Fuzzy ARTa to accept that category, rather than search for
a better one through an automatically controlled process of hypothesis testing.
Lower values of qa enable larger categories to form and lead to a broader
generalization and higher code compression. A predictive failure at Fuzzy
ARTb increases the minimal con®dence qa by the least amount needed to
trigger hypothesis testing at Fuzzy ARTa using a mechanism called match
tracking. Match tracking sacri®ces the minimum amount of generalization
necessary to correct the predictive error. Match tracking leads to an increase in
the con®dence criterion just enough to trigger hypothesis testing which leads to
a new selection of Fuzzy ARTa category. This new cluster is better able to
predict the correct target class as compared to the cluster before match
tracking. Fig. 4(a) shows the general Fuzzy ARTMAP architecture and Fig.
4(b) shows the network structure of Fuzzy ARTMAP as used in this paper.
Further details of this method can be found in [20±23].

7. Experimental study

The data set consists of 10 classes of images of numerals 0±9. Each class
consists of 25 images that are scaled between 0.8 and 1.2. The basis for this
scale factor range is that most unequal scalings of images occur in proximity of
the images, for example, as in the case of digitization errors. An example of a
class of unequally scaled numeral 2 is shown in Fig. 5 with di�erent scaling
constants in the x- and y-axis directions. Fig. 6 shows an example of numeral 3
that has been rotated with angles of 30°, 60°, 150°, 180°, 225° and 300°. The
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total number of images that are rotated and scaled unequally for each class in
this experimental study is 175. Therefore, the entire data set consists of 1750
images. Tables 3±5 give the results of the neural network output, i.e., the
predicted tilt angle for various cases of scaling factors and rotational angles.
The angle of rotation can be obtained from the computed angle minus the
predicted angle of tilt from the neural network. The errors for rotational angles
60° and 150° are the same since the neural network's input moment values do

Fig. 4. (a) Fuzzy ARTMAP architecture and (b) Fuzzy ARTMAP showing network structure as

used in the experiments in this paper.
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not di�er with a 90° di�erence. As can be seen from the tables, a small error is
produced due to lack of enough training for the neural network and also since
the images are digital rather than continuous.

Table 3

Results of images of numeral 2 without rotation

Scaling values Actual value Neural Network Error

a � 0:8 b � 0:8 6.242 6.284 0.042

a � 0:8 b � 1:0 9.802 9.676 0.125

a � 0:8 b � 1:2 16.67 16.42 0.250

a � 0:9 b � 0:9 6.242 6.247 0.005

a � 0:9 b � 1:0 7.587 7.588 0.001

a � 0:9 b � 1:1 9.298 9.202 0.096

a � 1:0 b � 0:9 5.249 5.218 0.031

a � 1:0 b � 1:1 7.438 7.439 0.001

a � 1:1 b � 1:0 5.332 5.291 0.041

a � 1:1 b � 1:1 6.242 6.231 0.011

a � 1:2 b � 0:9 4.027 4.144 0.117

a � 1:2 b � 1:1 5.403 5.387 0.016

a � 1:2 b � 1:2 6.242 6.257 0.015

Fig. 5. Numeral 2 with di�erent scaling constants between 0.8 and 1.2.

Fig. 6. Numeral 3 rotated through 0°, 30°, 60°, 150°, 180°, 225° and 300°.
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7.1. Experiment with unequally scaled and rotated images

Next, an experiment is conducted with unequally scaled images combined
with rotation. In this experiment, a comparison is made between using a neural
network to predict the tilt angle and without using the neural network where a
Fuzzy ARTMAP network is used for classi®cation purposes. Both experiments
were carried out with the newly derived kpq moments which consisted of
k20; k02; k02; k12; k30 and k03. The di�erence between the two experiments is
that the ®rst case uses the angle obtained from (17) (i.e., tilt plus angle of
rotation) directly in computing the unrotated moments. Whereas the second
case uses a neural network to predict the tilt angle and as such only the angle of
rotation is used in computing the unrotated moments after which (7) and (11)
are applied to both the cases to obtain kpq. Therefore, the ®rst case would
contain some error. The classi®cation results are as shown in Table 6. All
parameters for both the Fuzzy ARTMAP classi®cations were ®xed to be the
same and the training data set consisted of a di�erent number of images as
shown in the table and the remainder of the images were used for testing. The
Fuzzy ARTa vigilance parameter qa is set to 0 since this will allow maximum
generalization ability during classi®cation [23].

From Table 6, we can note the increase in classi®cation performance using
the newly derived moments, kpq, for the second case of using a neural network
to predict the tilt angle as compared to the case without using the neural
network. This shows that using kpq and a tilt angle prediction from a neural
network o�ers a solution for solving images that are unequally scaled and
rotated. A higher classi®cation percentage for the second case can be obtained
if the resolution size of the image is increased (i.e., to reduce the digitizing
e�ects) and if the neural network is trained with more patterns to give a more
accurate prediction of the tilt angle.

8. Conclusion

The regular moment functions, besides being invariant to translation, ro-
tation and re¯ection, are only invariant to scale if the scale changes in the x-

Table 6

Comparison of Fuzzy ARTMAP classi®cation percentage with and without using a neural network

No. training patterns Without neural network With neural network

70 61.24 71.15

140 67.48 74.36

210 72.25 83.15

280 75.35 86.42

350 82.40 94.75
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and y-axis directions are equal. In this paper, we have proposed new regular
moments that are invariant to unequally/equally scaling, translation and re-
¯ection. However, they are not invariant to rotation. In order to solve this
problem, we have obtained the angle of rotation by using a trained neural
network to predict the tilt angle. By using this angle of rotation, invariance to
rotation can be achieved and we have shown experimentally that using a set of
new equations, moment invariants can be derived for images that are equally/
unequally scaled, translated and rotated.
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