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Introduction

Biological signal is a common term used for time series 
measurements that are obtained from biological mechanisms 
and basically represent some form of energy produced by 
the biological mechanisms. Examples of such signals are 
electroencephalogram (EEG), which is the electrical activity 
of brain recorded by electrodes placed on the scalp; elec-
trocardiogram (ECG), which is electrical activity of heart 
recorded from chest, and electromyogram (EMG), which is 
recorded from skin as electrical activity generated by skeletal 
muscles (Akay, 2000). 

Nowadays, biological signals such as EEG and ECG are 
analysed extensively for diagnosing conditions like cardiac 
arrhythmias in the case of ECG and epilepsy, memory im-
pairments, and sleep disorders in case of EEG. Apart from 
clinical diagnostic purposes, in recent years there have been 
many developments for utilising EEG for brain computer 
interface (BCI) designs (Vaughan & Wolpaw, 2006). 

The field of signal processing provides many methods 
for analysis of biological signals. One of the most important 
steps in biological signal processing is the extraction of 
features from the signals. The assessment of such infor-
mation can give further insights to the functioning of the 
biological system.

The selection of proper methods and algorithms for 
feature extraction (i.e., linear/nonlinear methods) are current 
challenges in the design and application of real time biologi-

cal signal analysis systems. Traditionally, linear methods 
are used for the analysis of biological signals (mostly in 
analysis of EEG). Although the conventional linear analysis 
methods simplify the implementation, they can only give 
an approximation to the underlying properties of the signal 
when the signal is in fact nonlinear. Because of this, there 
has been an increasing interest for utilising nonlinear analysis 
techniques in order to obtain a better characterisation of the 
biological signals.

This chapter will lay the backgrounds to linear and 
nonlinear modeling of EEG signals, and propose a novel 
nonlinear model based on exponential autoregressive (EAR) 
process, which proves to be superior to conventional linear 
modeling techniques. 

Background Information

EEG Signal Processing

In recent years, the field of biological signal processing has 
seen an explosive growth. In particular, there have been 
many research studies on EEG signals for:

•	 Diagnosis of certain neurological conditions such as 
sleep disorders, memory impairments and epilepsy;

•	 Extracting relevant features for classification of dif-
ferent mental states;

Figure 1. The basic steps in EEG signal analysis
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•	 Understanding the dynamics and underlying mecha-
nisms of the brain.

Figure 1 shows the basic steps in the analysis of EEG 
signals, these are: preprocessing which includes the removal 
of noises such as the baseline noise, powerline interference 
and eye blink contamination; feature extraction, which 
extracts representative values of the signals through mod-
eling techniques, and classification, where the extracted 
features are classified in specific for the application, such 
as discrimination between different mental states or neu-
rological conditions. Note that the feature extraction step 
is not necessarily followed by classification—the features 
can also be used in understanding the nature and underly-
ing dynamics of the signals, for example in investigating a 
certain brain disorder. The selection of appropriate feature 
extraction methods for obtaining a better representation of 
the EEG signals is the most challenging step in EEG signal 
processing. This can be approached in two ways namely the 
linear and nonlinear modeling techniques. 

Utilising Linear Modeling Techniques for 
Analysis of EEG Signals

Since its discovery by Hans Berger in 1929 (Sanei & Cham-
bers, 2007) the EEG signals have been used extensively 
in research studies for diagnosis of certain neurological 
conditions (such as memory impairments, sleep disorders, 
and epilepsy). Traditionally linear modeling techniques like 
autoregressive (AR) modeling and power spectral estimation 
(PSD) have been extensively used for the analysis of EEG 
signals (Sanei & Chambers, 2007).

Palaniappan (2005) used second order AR model coef-
ficients as features for the classification of EEG signals 
recorded from alcoholic and control subjects. The EEG 
signals were recorded from subjects while they were exposed 
to visuals selected from Snodgrass and Vanderwart picture 
set (Snodgrass & Vanderwart, 1980). The feature sets were 
classified using three different classification algorithms 
namely the simplified Fuzzy ARTMAP (SFA) neural network 
(NN), multilayer-perceptron trained by the backpropagation 
algorithm (MLP-BP) and Linear Discriminant (LD) (Haykin, 
1998). The results of this study indicated that the classifiers 
were able to discriminate the alcoholic and control subjects 
with average discrimination error of 2.6%, 2.8% and 11.9% 
for LD, MLP-BP and SFA classifiers respectively.

In another study, Subasi, Kiymik, Alkan, and Koklukaya 
(2005) characterised and classified EEG segments recorded 
from epilepsy patients and healthy subjects using PSD values 
as feature sets. Two different methods were utilised for PSD 
estimation namely the AR spectral estimation and FFT-based 
spectral estimation. The feature sets were classified using 
multilayer feedforward neural network with backpropagation 
algorithm (MLP-BP). The results of this study indicated an 

average classification accuracy of 92.3% for AR spectral 
estimation and 91.6% for FFT-based spectral estimation. 
The authors also suggested that utilizing nonlinear methods 
instead of the conventional linear methods would improve 
the classification accuracy. 	

Apart from diagnostic purposes, in the last decade there 
has been an increasing interest in utilising EEG for Brain 
Computer Interface designs. Keirn and Aunon (1990) were 
one of the first groups that suggested using EEG as an al-
ternative mode of communication between disabled people 
and their environment. The different pairs of mental tasks 
were classified (i.e., baseline, maths, letter composing, geo-
metric figure rotation, and visual counting) using a Bayesian 
quadratic classifier. They used power asymmetry ratio for 
creating the feature sets since the mental tasks were identi-
fied as belonging to right or left hemisphere of the brain. 
In addition, they used AR model coefficients as feature 
sets. Their study showed that the AR method was superior 
to asymmetry ratios where the most significant result was 
84.6% classification accuracy for discrimination of two 
different mental tasks.

Utilising Nonlinear Modeling Techniques 
for Analysis of EEG Signals

The individual neurons in the brain behave in a nonlinear 
manner. There are many research studies reporting more 
or less successful attempts to apply nonlinear methods to 
biological time series data (Babloyantz, Salazar & Nicolis, 
1985; Bukkapatnam et al, 2002; Gautama, Van Hulle & 
Mandic, 2003; Lehnertz, Mormann, Kreuz, Anderzak, Rieke 
& David, 2003; Stepien, 2002). 

One of the first studies on nonlinear EEG analysis was 
by Babloyantz et al. (1985). In this study it was shown that 
certain nonlinear measures (i.e., Correlation Dimension) 
change during low-wave sleep patterns. In other words, 
different sleep stages could be discriminated using these 
nonlinear measures. After this study the nonlinear methods 
began to attract the interest of many researchers. Nonlinear 
methods have been applied mainly to areas such as diag-
nosis of epileptic seizures and sleep disorders (Chippa & 
Bengio, 2003).

Bukkapatnam (2007) characterized and classified two 
different mental conditions from EEG signals using the theory 
of nonlinear dynamical systems. In this study, 64 channel 
signals of length 256 samples recorded from 20 people were 
used. Out of 20 EEG signals used, 10 were obtained from 
people under alcoholic influence and the remaining ten were 
recorded from people in a normal (non-alcoholic) condition. 
The feature sets were created by calculating the correla-
tion dimension of the EEG segments (where this measure 
quantifies the nonlinear complexity of the signals) (Sanei & 
Chambers, 2007). The created feature sets were used as an 
input to a two layer back propagation neural network. The 
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N
classifier was able to distinguish between subjects under 
alcoholic influence and the control subjects with 90% ac-
curacy. The results of this study indicated that EEG signals 
could be described as noise-contaminated, nonlinear, and 
perhaps chaotic dynamic systems.

In Stepien et al. (2002), an analysis of spontaneous EEG 
of 21 healthy subjects recorded when they were resting was 
conducted. The EEG signals were tested if they were gen-
erated by a nonlinear process using surrogate data method 
(Theiler, Eubak, Longtin, Galdrikian & Farmer, 1992), where 
the nonlinear prediction error was used as a test statistic. 
Out of 336 (from 21 subjects with 16 channels) EEG seg-
ments, only 17 (5%) of them were found to be nonlinear. 
The results of this study indicated very low percentage 
of nonlinearity in the EEG signals recorded from healthy 
subjects. However, the existence of nonlinearity in various 
pathological states like epilepsy is indicated by Lehnertz et 
al. (2003) and Gautama et al. (2003). The existence of this 
distinguishing feature between normal and diseased cases 
would allow improved classification of EEG signals using 
nonlinear methods.

In another previous study done by Gautama et al. (2003), 
the nonlinearity of EEG signals recorded from healthy and 
epilepsy patients was investigated. In total, five sets of EEG 
data were utilised where the sets A and B were recorded 
from healthy subjects with eyes open and closed, the sets C 
and D were recorded from epilepsy patients during seizure-
free interval from epileptogenic zone and from outside of 
epileptogenic zone, respectively. And the set E contained 
the EEG segments recorded from epilepsy patients during 
seizure activity recorded from seizure generating areas. The 
nonlinearity of the EEG segments was assessed by surrogate 
data method (Theiler et al., 1992) where the delay vector 
variance, third order autocorrelation and asymmetry due to 
time reversal methods were used for the characterisation of 
time series (Gautama et al., 2003). The results of this study 
indicated that the percentage of nonlinearity is lower for 
EEG segments recorded from healthy subjects (i.e., with 
eyes open and closed: sets A and B) compared to epilepsy 
patients (i.e., during seizure and seizure free intervals: sets 
C, D, and E). These results show that there are clear differ-
ences in dynamical properties of the electrical activity of the 
brain recorded from different physiological and pathological 
brain states.

Lehnertz et al. (2003) indicated in his article that there 
are plenty of evidences in the literature that nonlinear EEG 
analyses are able to characterize the neuronal behavior in 
the brain and provide a tool for detecting the preictal state 
in the epilepsy patients. However the sufficiency of sensi-
tivitya and specificityb of these analysis techniques are still 
subject to current research. The development of new time 
series analysis techniques that will sufficiently represent 
the nonlinear, chaotic and multidimensional behavior of 
the EEG signals will improve the understanding of the 

brain dynamics. Once enough specificity and sensitivity is 
obtained from these analysis techniques, more extensive 
clinical studies and the implementation of such systems can 
be considered in the future.

	

Exponential Autoregressive 
Model–A Recent Nonlinear Mod-
eling Technique for 
Analysis of EEG Signals

Haggan and Ozaki (1981) introduced EAR algorithm for 
modeling nonlinear fluctuations in time series. They stated 
that the analysis of stochastic processes have been mostly 
done using some form of linear time series modeling and 
this can only provide an approximation to the underlying 
properties of the signals. Besides, it is found that many signals 
exhibiting random vibrations display nonlinear behavior; 
hence a nonlinear model that gives a good approximation 
to the underlying properties of a signal is required. 

The EAR model exhibits certain features of random 
vibrations that do not occur in linear models namely the 
amplitude-dependent frequency, jump phenomena and limit 
cycle (Haggan & Ozaki, 1981).

An EAR model of order p is defined by; 
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where φ, π, γ are autoregressive coefficients, xt is data 
at sampled point t, p is the model order and et is Gaussian 
white noise with mean zero.

The nonlinearity of the EAR model comes from the 
exponential term,  2)( knxe −⋅ , which makes the series globally 
nonlinear. If nonlinear parameter γ is set to 0, the equation 
will become an ordinary linear AR model with coefficients 
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The estimation of the 2p+1 coefficients {γ, (φi,, πi,, 
i=1,2,…,p )} of the EAR model is a nonlinear optimisation 
problem, hence is complicated especially with increasing 
model order. In order to achieve this task, binary genetic 
algorithms (BGA) hybridized with recursive least squares 
(RLS) algorithm can be used (Shi & Aoyama, 1997). 

Genetic algorithms are search algorithms inspired by the 
natural selection and natural genetics which can be used to 
solve optimisation problems. Initially, there is a population 
of candidate solutions to the optimisation problem and the 
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solutions evolve toward better solutions according to the 
principles of natural selection (i.e., survival of the fittest) 
(Goldberg, 1989). For the selection of the fittest chromo-
some, a fitness function that measures the performance of 
a chromosome in the population must be defined according 
to the optimisation problem to be solved. 

In our study here, the nonlinear coefficient γ of the EAR 
model is determined by BGA and once the nonlinear coef-
ficient is obtained, the model will become a linear regression 
problem in which the linear coefficients, {φi,, πi,, i=1,2,…,p} 
will be determined by RLS algorithm. Moreover, the model 
order is selected as the order with minimum Akaike Informa-
tion Criterion (AIC) value (Akaike, 1974). 

Figure 2 shows an example of signal to noise ratio (SNR) 
results obtained by applying conventional linear AR modeling 
and EAR modeling to EEG data from a healthy subject and 
an epilepsy patient. Note that the SNR values were calcu-
lated by reconstructing time series with corresponding AR 
coefficients (for both AR and EAR modeling techniques) 
and calculating the SNR between original and reconstructed 
signals. The figure clearly indicates an improved modeling 
when EAR was used.

These initial results are promising since it appears that 
the EAR method can provide an improved characterisation 
of time series. It is hoped that this method will lead to a 
better representation of the EEG signals when used in vari-
ous applications.

Future Trends

The preliminary results obtained from EAR model are 
promising since they indicated an improved modeling of 
EEG signals recorded from healthy subjects and epilepsy 
patients. However, further experiments should be conducted 
to investigate the representative ability of EAR method 
for the classification of different classes of EEG data (i.e., 
EEG data from epilepsy patients during seizure and seizure 
free intervals, EEG data from healthy subjects, mental task 

EEG data, etc). 
The proposed improved EAR method could also be 

explored for other biological signal analysis applications, 
such as electrophysiological analysis of cognitive processes, 
prediction of epilepsy onset, abnormal heart sound and beat 
detection, heart rate variability monitoring, and so forth. 

 

Conclusion

The characterisation (i.e., feature extraction) of EEG signals 
is one of the most challenging steps towards the design of 
a real time biological signal analysis system. In order to 
achieve that task, knowledge of the underlying dynamics 
of the EEG signals is necessary so that suitable modeling 
techniques could be utilised for characterisation of the EEG 
signals. In recent years, nonlinear time series analysis tech-
niques in particular largest Lyapunov exponent, correlation 
dimension and nonlinear prediction error measures along with 
surrogate data method were repeatedly applied to some of 
the biological signals (specifically, EEG) in order to under-
stand the nature of the signals. The results of these studies 
suggested presence of highly significant nonlinearities in 
EEG signals, especially the signals recorded from patients 
with neurological disorders. However the sensitivity and 
specificity of the utilized nonlinear measures are still subject 
to current research. It is believed that the development of 
new time series analysis techniques that will sufficiently 
represent the nonlinear, chaotic and multidimensional be-
havior of the EEG signals will improve the understanding 
of the brain dynamics.
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Key Terms 

AR: Autoregressive model, a linear prediction model 
where each data point in time series is defined to be linearly 
related to its previous data points.

EAR: Exponential Autoregressive model, a nonlinear 
extension of Autoregressive model.

Linear Regression: A technique that attempts to model 
a set of data points by fitting a linear equation to the data.

Linear System: A system f(·) that obeys the superposi-
tion and scaling property is said to be linear such that; for 
a, b Є R : f(a·x + b·y) = a·f(x) + b·f(y).

Linear Signal: A linear signal is generally defined as 
the output of a linear shift invariant system that is driven by 
Gaussian white noise.

Nonlinear Signal: A nonlinear signal is generally defined 
as the signal generated by the system that does not obey 
superposition and scaling properties. 

Power Spectral Density: Power spectral density shows 
the power per unit frequency of a signal. 

Shift-Invariant System: A shift-invariant system is 
known as a system that input-output relationship does not 
vary with time such that; let y[n] be the response of the 
system to input x[n], for any delay t, the response of the 
system to input x[n-t] will be y[n-t].

Stochastic (Random) Process: Opposite of deterministic 
processes in which the future states of the system can not be 
predicted precisely. In other words, even if the initial states of 
the process are known there are many states that the process 
can go where some states are more probable than others.

White Noise: A random signal that has equal amount 
of power at all frequency bands.
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Endnotes

a	 Sensitivity is a statistical measure of how well a clas-
sification test correctly identifies a condition.

b	 Specificity is a statistical measure of how well a clas-
sification test correctly identifies the negative cases, 
or those cases that do not meet the condition under 
study.


