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A B S T R A C T

The presentation order of training patterns to a simplified fuzzy ARTMAP (SFAM) neural network affects

the classification performance. The common method to solve this problem is to use several simulations

with training patterns presented in random order, where voting strategy is used to compute the final

performance. Recently, an ordering method based on min–max clustering was introduced to select the

presentation order of training patterns based on a single simulation. In this paper, another single

simulation method based on genetic algorithm is proposed to obtain the presentation order of training

patterns for improving the performance of SFAM. The proposed method is applied to a 40-class individual

classification problem using visual evoked potential signals and three other datasets from UCI repository.

The proposed method has the advantages of improved classification performance, smaller network size

and lower training time compared to the random ordering and min–max methods. When compared to

the random ordering method, the new ordering scheme has the additional advantage of requiring only a

single simulation. As the proposed method is general, it can also be applied to a fuzzy ARTMAP neural

network when it is used as a classifier.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy ARTMAP (FAM) [1] and simplified fuzzy ARTMAP (SFAM)
[2] belong to a special class of neural networks (NNs) which are
capable of incremental learning. In the fast learning mode, these
networks have lower training time compared to other NN
architectures like Multilayer Perceptron. SFAM and FAM have been
used in numerous classification problems [1–6]. FAM structure has
three modules: Fuzzy ARTa, Fuzzy ARTb and Inter ART. SFAM differs
from FAM in that its main purpose is for classification and as such,
does not have Fuzzy ARTb, which becomes redundant for this
purpose.

The presentation order of training patterns affects the classi-
fication (i.e. generalisation) performance of SFAM. To solve this
problem, SFAM is trained several times using training patterns
presented in random order (i.e. permutations of the training
patterns) and then the predicted class of the test patterns are
stored. Majority votes are used to determine the final class
prediction for the test patterns [1]. It is also customary to state the
average classification of test patterns from all the simulations in
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addition to the voting results. To solve the problem of having to run
many simulations, a single simulation method based on min–max
clustering was proposed [3]. For a c-class problem, the method
works by ordering the c training patterns that are maximally
distant in the training feature space. Next, for the rest of the
patterns, the method orders training patterns that are minimally
distant from these c patterns. Hence, it is known as min–max
ordering.

In this paper, a method that uses genetic algorithm (GA) [7] to
select the presentation order of training patterns is proposed. The
method works by using the selection, mutation and inversion
operators in GA to select the presentation order of training patterns
that maximises the SFAM classification performance. Once the
order is selected, only a single SFAM training simulation (similar to
min–max ordering) will be required for classification of test
patterns. The performance of the proposed technique is compared
with training patterns ordered by min–max and random ordering
using classifications of visual evoked potential (VEP) patterns to
identify individuals [8]. In addition, three data sets from UCI
repository [9] are also used to measure the performances of these
ordering methods. From this point onwards, these three methods
will be denoted simply as GA method, random ordering method
and min–max method. All the discussions in this paper on SFAM
could be equally applied to FAM with the condition that FAM is
used as a classifier.

mailto:rpalan@essex.ac.uk
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http://dx.doi.org/10.1016/j.asoc.2008.03.003


Fig. 1. . Architecture of SFAM.
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2. Simplified fuzzy ARTMAP

Fig. 1 shows the architecture of SFAM. It consists of two
modules (Fuzzy ART and Inter ART) that create stable recognition
categories in response to sequence of input patterns. During
supervised learning, Fuzzy ART receives a stream of input features
representing the pattern that map to the output classes in the
category layer. Inter ART module works by increasing the vigilance
parameter (VP) of Fuzzy ART by a minimal amount to correct a
predictive error in the output category layer. VP calibrates the
minimum confidence that Fuzzy ART must have in an input vector
in order for Fuzzy ART to accept that category, rather than search
for a better one through an automatically controlled process of
hypothesis testing. Lower values of VP denote increased general-
isation ability and lower category formations, while larger values
of VP induce more categories [1].

2.1. Fuzzy ART

Fuzzy ART module has three different layers: F0, F1 and F2

consisting of nodes. Input layer F0 nodes represent a current input
vector and F0 activity vector is denoted by I = (I1, . . .,IM), with each
component Ii in the interval [0,1], I = 1, . . .,M.

Proliferation of categories in Fuzzy ART is avoided if the inputs
are normalized using the method of complement coding. There-
fore, the complement coded input I to the field F1 is the 2M

dimensional vector

I ¼ ða; acÞ where ac
i ¼ 1� ai (1)

F1 layer nodes are connected to output layer F2 nodes through a
weight vector. For each F2 category node j (j = 1, . . .N), there is a
weight vector associated with layer of F1 nodes, w j ¼
ðw j1; . . . ;w j2MÞ of adaptive weights. The initial condition is

w j1ð0Þ ¼ � � � ¼ w j;2Mð0Þ ¼ 1 (2)

which means that each category is uncommitted.
For each input I and F2 node j, the choice function Tj is defined by

T jðIÞ ¼
jI^w jj
aþ jw jj

(3)
where the fuzzy AND operator ^ is defined by

ðp^ qÞi ¼minðpi;qiÞ (4)

and the norm j�j is defined by

j pj ¼
XM
i¼1

j pj (5)

for any M-dimensional vectors p and q. For simplicity, let, Tj(I) in (3)
be denoted as Tj when the input I is fixed. A category choice is made
when one F2 node becomes active at a given time. The category
choice is indexed by J, where

TJ ¼maxfT j : j ¼ 1; . . . ;Ng (6)

If more than one Tj is maximal, the category with a smaller index is
chosen.

Resonance occurs if the match function, jI^wJ j=jIj of the chosen
category meets the vigilance criterion:

jI^wJ j
jIj � r; (7)

where r is VP. With resonance, learning starts, as explained below.
Mismatch reset occurs if condition in (7) is not met and then the
value of the choice function TJ is set to 0 and a new index J is chosen
by (6).

The search process continues until the chosen J satisfies (7).
Once the search is completed, the weight vector wJ is updated
according to the equation

wðnewÞ
J ¼ ðI^wðoldÞ

J Þ (8)

assuming that fast learning is used.

2.2. Inter ART

The Inter ART module will create mappings between the Fuzzy
ART layer F2 and output category layer to correctly learn to predict
the classification patterns. For all the input patterns presented, it
creates a dynamic weight link that consists of a many to one or one to
one mapping between the F2 and output category layers. Whenever
a one to many mapping from the F2 and output category layers
happens, an error correcting mechanism called match tracking
occurs which will increase the VP to a value slightly higher than

jI^wJ j
jIj (9)

where J is the index of the active F2 node.
Match tracking avoids confusing in predictions. When this

occurs, Fuzzy ART search leads either to another category that
correctly predicts the target or to an uncommitted new category
and the dynamic weight link between the Fuzzy ART and Inter ART
modules (F2 and output category layers) are updated. After this, VP
is set back to the earlier (baseline) vigilance parameter value. This
process is continued until all the training patterns have been
presented.

2.3. Testing stage and effect of input pattern order during training

The testing stage works in the same principle except that there
will be no match tracking. This is since the input presented to
Fuzzy ART will output values at F2 layer. The node at F2 with
highest value will trigger the link in the Inter ART module to
establish the appropriate node in output category layer, which will
denote the predicted class.

The order of input patterns during training affects the formation
of the nodes at F2 layer of Fuzzy ART module, even for a fixed VP.



Fig. 2. Initial GA population.
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Hence, the different presentation order of training input patterns
will affect the SFAM network size (i.e. the number of F2 nodes) and
as a result, the classification performance will vary too. Random
ordering and min–max methods have been suggested to solve this
problem [1]. In this paper, we propose another superior method
using GA to select the pattern ordering.

3. Pattern ordering using GA method

The overall methodology could be divided into two separate
phases. In the first phase, either GA or min–max (as comparison)
was used to order the input training patterns. The second phase
involved testing the performance of SFAM for all the ordering
methods (i.e. our proposed method, min–max and random). This
second phase was conducted to show the improvement in SFAM
performances when trained by training patterns ordered by GA as
compared to min–max and random ordering.

Initially, the available dataset was split into three sets: datasets 1,
2 and 3. In the pattern ordering phase, GA was used with datasets 1
and 2 where GA was run for 100 generations with the fitness of 20
chromosomes given by SFAM training and testing for each
chromosome (hence 20 times for a generation). SFAM was trained
with VP value of 0. When this was completed, the presentation order
of training patterns has been selected, and GA was not used anymore.
Similarly, dataset 1 was used by the min–max method in the pattern
ordering phase to order the presentation of training patterns. After
order selection, the min–max method was not used anymore.

In the next phase of performance testing, the presentation orders
selected by GA and min–max methods were used. For random
ordering, since there was no pattern ordering phase, the simulation
was repeated 20 times with random permutations of the training
patterns and voting strategy1 as suggested in [1] was used to predict
the final class of the test patterns. For this second phase, we
conducted classification experiments with dataset 1 for SFAM
training and dataset 3 for SFAM testing. Dataset 2 was not used here
(to be fair) as only GA has used this dataset before in the earlier phase.
In other words, all the different ordering methods (proposed, min–
max and random) were trained and tested with the same datasets.

This may seem confusing as SFAM training and testing were
involved in both phases for GA method but it should be noted that
the SFAM training and testing used in pattern ordering phase was
different from the SFAM training and testing used in performance
testing phase. The SFAM training (conducted for 2000 times as we
had 100 generations and population size of 20) in pattern ordering
phase was conducted with the aim to order the presentation of
training patterns. But the SFAM training in performance testing
phase was conducted with the aim to test the classification
performance of SFAM with the selected presentation order of
training patterns. So, in the second performance testing phase, for
the presentation order selected by GA and min–max methods, only
1 Each random ordering will predict a certain class. The final output was based on

the majority vote of the different classes.
one SFAM training and testing was completed. Neither GA nor min–
max methods was used in this second phase, only the presentation
order selected earlier by GA or min–max methods was used. For
random ordering, 20 SFAM training and testing were conducted in
the performance testing phase.

The steps involved in the GA are as follows.

3.1. Initialisation

The number of genes in each chromosome was set to the
number of patterns, NP1 in dataset 1. Each gene was randomly set
from integer values of 1 to this number, without repetition (as
shown in Fig. 2). Twenty similar chromosomes were generated,
which represent the population.

3.2. Fitness value

To calculate the fitness value of each chromosome, SFAM was
trained (using VP set to zero to speed training and minimise
overfitting) by patterns in dataset 1 using the presentation order
given by the chromosome. The trained SFAM was tested with
patterns from dataset 2 and the fitness value was computed as the
percentage of correctly classified patterns over the total tested
patterns.

The fitness function for each chromosome was therefore

fitness ¼
correctlyrecognised

NP2
; (10)

where NP2 is the total number of pattern in dataset 2.

3.3. Selection, mutation and inversion operators

Two selection (reproduction) methods, namely, roulette wheel
and tournament selection methods were used to select the
chromosomes for the next generation. Half of the population (i.e.
10 chromosomes) were selected by each method. Here, the tourna-
ment selection method works by selecting the best from three
randomly chosen chromosomes. This step was repeated 10 times to
obtain 10 chromosomes. Tournament selection would be useful to
retain the chromosomes with high fitness values, but roulette wheel
selection was necessary to avoid premature convergence, i.e. to
avoid GA from converging too quickly with suboptimal chromo-
somes. The roulette wheel method works by selecting chromosomes
with a higher probability of survival. In general, higher fitness
chromosomes will have a higher chance of survival [7].

For mutation, two genes in one chromosome were randomly
chosen and they were swapped if

r< pm; (11)

where r is a random number generated in the range [0,1] and pm is
the mutation rate. This mutation procedure used here is different
from the common method of applying the mutation operation
because of the nature of the problem, where genes in every



Fig. 3. Mutation operation as used here.

Fig. 4. Inversion operation as used here.

Table 1
Summary of GA parameters

Coding of genes Integer coding in the range [1, NP1]

Fitness function SFAM classification performance (training dataset 1,

testing dataset 2)

Population size 20

Number of genes NP1 (depending on the number of pattern in

dataset 1)

Reproduction (selection) Roulette wheel (50% of population) and tournament

selection (50% of population)

Mutation type and rate Two bit swap in one chromosome, initial

probability = 0.9 (decreases with generations)

Inversion type and rate Inversion between two randomly selected points,

initial probability = 0.9 (decreases with generations)

Convergence 100 generations
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chromosome must be permutations of genes in other chromo-
somes. This is also the reason why crossover operator was not used
here. Fig. 3 shows an example of this mutation operation.

Inversion operator was used to inverse the genes in the
chromosomes. Here, a two-point inversion operator was used. Two
points were randomly chosen and genes from a randomly chosen
chromosome were inverted between these two points if

rr< pl; (12)

where rr is a random number generated in the range [0,1] and pl is
the inversion rate. An example of the inversion operation is shown
in Fig. 4.

Mutation and inversion operators were applied for certain
number of times based on the probability, p, which was initially set
at 0.9. The high initial probability was chosen because of the lack of
crossover operator. The probability was gradually reduced with
increasing number of generations using

pðnÞ ¼ 0:9 � 1� n

max generation

� �
; (13)

where n is the current generation.

3.4. Iterate

Steps 2 and 3 were repeated until a maximum generation
number of 100 was reached. The overall best chromosome (with
highest fitness value) was then stored. Since the best chromosome
selected by the GA depends on the initial search space, GA
simulation was repeated five times and the chromosome that has
the fitness value closest to the average of the five best
chromosomes’ fitness values was the one that was actually stored.
Fig. 5. GA method to select
This chromosome represents the GA selected presentation order of
training patterns for SFAM. Fig. 5 shows the steps involved in the
GA method, while Table 1 summarizes the GA parameters.

4. Experimental study

An experimental study is conducted to show the superior
performance of the GA method compared to the random ordering
and min–max methods. For this purpose, the dataset used in an
earlier work to identify individuals [8] was used. In addition, three
datasets, namely, wine, glass and iris, from UCI repository [9] were
also used.

4.1. Individual classification data

The details of this data set will be briefly repeated here. VEP
signals were extracted from 61 channels from 40 subjects while
seeing a picture. These pictures were objects chosen from Snodgrass
and Vanderwart picture set [10]. These pictures represent common
black and white objects, such as, for instance, airplane, banana, and
ball (a few examples are shown in Fig. 6). These were chosen
according to a set of rules that provides consistency of pictorial
contents and have been standardized based on the variables of
central relevance to memory and cognitive processing. These objects
had definite verbal labels, i.e. they could be named.

The subjects were asked to remember or recognize the stimulus.
Stimulus duration of every picture was 300 ms with an inter-trial
interval of 5.1 s. All the stimuli were shown using a display located
the presentation order.



Fig. 6. Examples of pictures shown.
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1 m away from the subjects. Forty VEP measurements (each with
length 1 s after each stimulus onset) were stored.

Gamma band energy in the range of 30–50 Hz for each VEP
signal was computed using zero-phase forward and reverse
Butterworth filter and Parseval’s time-frequency equivalence
theorem. Each VEP pattern consisted of these energy features
from 61 channels. These VEP patterns were then classified into the
40 categories representing the different subjects.

The data consisting of 1600 VEP patterns were divided
exclusively into three sets: datasets 1, 2 and 3. Datasets 2 and 3
each consisted of 13 VEP patterns from each subject, while dataset
1 consisted of 14 VEP patterns from each subject. Therefore, in
total, dataset 1 consisted of 560 VEP patterns, while datasets 2 and
3 consisted of 520 VEP patterns.

4.2. UCI repository data sets

4.2.1. Wine

The wine dataset is a three-class classification problem. These
data are the results of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars. The
original dataset consisted of 178 patterns each with 13 features
representing the level of alcohol, malic acid, ash, alkalinity of ash,
magnesium, total phenols, flavanoids, non-flavanoid phenols,
proanthocyanins, color intensity, hue, OD280/OD315 of diluted
wines, and proline. For the purpose of the experimental study here,
dataset 1 consisted of 60 patterns while datasets 2 and 3 each
consisted of 59 patterns.

4.2.2. Glass

The glass dataset is a six-class classification problem, defined in
terms of their oxide content (i.e. Na, Fe, K, etc.). The study of
classification of types of glass was motivated by criminological
investigation. At the scene of the crime, the glass left can be used as
evidence assuming that it is correctly identified. The original dataset
consisted of 214 patterns each with nine features, namely refractive
index, sodium, magnesium, aluminum, silicon, potassium, calcium,
barium, and iron. The chemicals were measured in weight percent in
corresponding oxide. The six classes are building windows float
processed, building windows non-float processed, vehicle windows
float processed, containers, tableware and headlamps. For the
purpose of the experimental study here, dataset 1 consisted of 78
patterns while datasets 2 and 3 each consisted of 68 patterns.

4.2.3. Iris

The iris dataset is a three-class classification problem. The
original dataset contained 3 classes of 50 instances each, where
each class refers to a type of iris plant: Setosa, Versicolor, and
Virginica. One class is linearly separable from the other two; the
latter are not linearly separable from each other. The four features
are (in cm): sepal length, sepal width, petal length, and petal width.
For the purpose of the experimental study here, datasets 1, 2 and 3
each consisted of 50 patterns.
The selections of patterns for each dataset were done randomly.
As could be seen from the described division, each dataset consists
of approximately equal number of patterns from each class. The
left over patterns (if any) after dividing the datasets into three
equal portions were pushed into dataset 1.

For all the data in this experimental study, datasets 1 and 2
were used by the GA to select the presentation order of training
patterns for the SFAM, while dataset 3 was used to test the
performance of the trained SFAM.

4.3. Performance testing—results and discussion

The classification was carried out for VP values ranging from 0.1
to 0.9 (in steps of 0.1) but to save space, only the averaged results
for classification performances, averaged training times (for a
single pattern) and averaged SFAM network sizes (i.e. number of
Fuzzy ART F2 nodes) are given in Table 2. Note that the SFAM
training times reported in Table 2 were the average time to train a
single pattern in the performance testing phase. Actually, the
random-voting method would require 20 as many weights or 20
training times as shown in Table 2. But in reality, either the training
time or the weights would be 20 times more, but not both the
training time and weights. This is a notable fact, though the
average of both training time and weights are reported here. In
addition, the SFAM training time for random-average method was
not from 20 SFAM trainings but averaged from 20, which was done
to approximate one SFAM training time. Fig. 7 shows the
classification performances for varying VP values using different
ordering methods for the four different datasets.

From Table 2 and Fig. 7, it can be seen that the GA method gave
superior classification performance over both random ordering
and the min–max methods for all the VP values. This is true for all
the studied four data sets. For example, for the individual
classification data, the averaged performances over all the VP
values were 93.48% (GA method), 89.17% (random ordering –
averaged), 91.84% (random ordering with voting) and 90.26%
(min–max method). It can also be seen that GA based presentation
order of training patterns required lower training times and
smaller SFAM sizes when compared to the random ordering and
min–max methods. This was also true for all the VP values and for
all the four data sets. The GA method is also advantageous over
random ordering since it requires only one simulation. Note that
the classification performances of the min–max method reported
here for wine, class and iris data are different from [3] because of
the difference in the sizes of the data used.

Another interesting fact that can be concluded from Fig. 7 is
that the VP values do not affect the classification performance of
the GA method as significantly as they do for the random ordering
and min–max methods. As such, if the GA method is used, the
value of VP can be fixed at 0. The two main parameters that require
tuning for SFAM are presentation order of training patterns and
VP. By using the GA method, the SFAM does not require tuning of
either of these parameters.



Table 2
Summary of averaged results (VP = 0.1–0.9) for the different datasets using

different ordering methods

Dataset Ordering method Training time (s) SFAM size Classification (%)

Individual GA method 0.011134 94.10 93.48

Random – average 0.012028 98.96 89.17

Random – voting 0.012028 98.96 91.84

Min–max 0.011150 94.20 90.26

Wine GA method 0.001033 10.90 94.24

Random – average 0.001201 11.37 87.77

Random – voting 0.001201 11.37 88.14

Min–max 0.001283 12.60 92.38

Glass GA method 0.000731 18.80 68.68

Random – average 0.001122 19.10 53.57

Random – voting 0.001122 19.10 49.26

Min–max 0.001397 21.30 50.29

Iris GA method 0.000945 7.60 95.42

Random – average 0.000949 7.87 92.22

Random – voting 0.000949 7.87 92.08

Min–max 0.001037 8.10 93.54

Fig. 7. Classification performances using different ordering methods for the four data sets: (a) individual; (b) wine; (c) glass; and (d) iris. Legend: GA method (–&–), random-

averaged (–~–), random-voting (–*–), and min–max ( ).
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In the pattern ordering phase, our simulations indicate that GA
selects the pattern order is much lesser time than min–max though
the GA has to run 100 iterations! This difference becomes more
evident as the numbers of training patterns become higher due to
the increase of the min–max ordering complexity with increasing
pattern size. However, exact time comparisons are not a matter of
concern as there would be no such comparison possible with the
random ordering method which does not have pattern ordering
phase. Furthermore, the pattern ordering phase is generally
conducted ‘offline’ and the important issues are actual performances
addressed in the second phase (like training time, size, accuracy)
once the presentation order of training patterns have been selected.

5. Conclusion

This paper has proposed the use of GA to select the presentation
order of training patterns for SFAM. The new method could also be
applied to FAM. The performances of the proposed method have
been compared with the performances of the random ordering
with a voting strategy and the min–max method for solving an
individual classification problem using VEP signals and three data
sets from UCI repository. Though there are computational over-
heads for the proposed method, it will be only during the pattern
ordering phase and once ordered, the method performed the
fastest.

It has been shown that SFAM classification performances were
better for the GA based method when compared to the random
ordering and the min–max methods. Further the GA based method
required lower training times and smaller SFAM sizes when
compared to the other methods. An additional advantage of the
proposed method over random ordering method was that it
required only a single simulation. The SFAM classification
performances, when training patterns were ordered by the GA
method showed only a small variance for different VP values. SFAM
could be used with a VP of 0 for both the pattern ordering and
performance testing phases. This means that the two parameters in
SFAM, namely, presentation order of training patterns and VP do
not require tuning for this method.
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