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Using High-Frequency Electroencephalogram in Visual 
and Auditory-Based Brain-Computer Interface Designs

by Cota Navin Gupta and Ramaswamy Palaniappan

Evoked potentials obtained from brain’s electrical activity (i.e. electroencephalogram [EEG]) in response to both visual 
and auditory oddball paradigms have been used in brain-computer interface (BCI) designs, as a means of achieving 
external control directly from the brain. This is obviously useful for the severely disabled, but it can also be used for 
creative applications in music performance. We present here a novel approach that combines conventionally used low 
frequency information with higher frequency in gamma band to enhance the performance of such BCI designs. EEG data 
were obtained from three and two subjects for the visual and auditory paradigms, respectively. In the visual paradigm, the 
subjects perceived common pictures like TV, radio, lamp etc., while for the auditory paradigm, the subjects listened to 
simple computer-generated sounds like “ding”, “exclamation”, “chimes” etc. Recognition of target picture or sound 
focused by the subject using the EEG data allows a control mechanism to be designed, which can then be used to control 
the movement of a wheelchair, to trigger a sound sample, or to create harmonic variations over a synthesised piece of 
music. The results confirm that using the higher frequency gamma band, which has been mostly overlooked in BCI 
studies, along with low frequency in the P300 temporal region, give better classification accuracies for both paradigms. 
This study offers motivation warranting further exploration on the link between low and high frequency of evoked 
potentials from EEG for use in visual and auditory based BCI designs.

An electroencephalogram (EEG) based brain-computer interface (BCI) is a system that allows direct communication 
or control of an external device using electrical signals obtained from the brain. Fully invasive methods that place 
electrodes in the grey matter of the brain are not popular due to risks involved, and while partially invasive EEG-
based BCI (that places the electrodes on the outside of the brain but inside the skull) are less risky, these are also not 
as popular as non-invasive EEG-based BCI, where the placement of the electrodes are on the surface of the scalp.

There are several approaches to implementing a non-invasive EEG-based BCI such as those based on transient 
evoked potential from oddball paradigm (Donchin et al., 2000) or from steady-state evoked potential (Wilson et al., 
2011), mental activity (Palaniappan 2006), motor imagery (Ince et al., 2009) and slow cortical potential (Hinterberger 
et al., 2004). In this paper, the focus is on improving the performance of BCI based on transient evoked potentials 
using oddball paradigm where both the visual and auditory paradigms were studied. The main advantage of using 
evoked potentials is that they are automatically generated by the brain in response to a stimulus and require minimal 
training. Therefore, they can be used effectively to drive a BCI.

The basic blocks of a typical BCI are illustrated in Figure 1. During a paradigm (like oddball, motor imagery etc.), 
brain activity (i.e. EEG) is measured using one of the modalities. These signals then undergo a conversion from 
analogue to digital form. As the signals normally contain noise, the next block involves a pre-processing stage to 
reduce artifacts and other undesired components. This is followed by a feature extraction block (such as extraction of 
time, frequency, joint time-frequency or spatial domain features). Finally, the features are classified and translated to 
control commands for applications like alphanumeric speller (Donchin et al., 2000), Brain Computer Musical 
Instruments (BCMI, Miranda and Brouse 2005) or interactive instrument for real-time scoring of moving images, as 
for the EMO-Synth (Vermeulen 2012).
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Figure 1. Block diagram showing the basic steps in a 
typical BCI system. [Click image to enlarge]

 

Figure 2. Six images used in the visual paradigm. 
[Click image to enlarge]

In an oddball paradigm, two different classes of stimuli are used: a 
target and a non-target. The two classes of stimuli are presented in a 
random sequence with the target stimulus appearing rarely. Users are 
instructed to respond to each occurrence of the target stimulus by 
either pressing a button or keeping a count or just recognising the 
target, while ignoring the non-target stimulus. Under such 
circumstances, when the target stimulus appears, a change in the 
evoked potential occurs in the captured EEG, and when this change is 
recognised correctly, it can be translated into useful control 
mechanisms such as selecting characters in a speller or controlling 
movement of a wheelchair, but it can also provide control variables 
for sound effect parameters, discrete events that trigger changes in 
harmonic pitches, etc. Obviously, such designs would prove to be 
useful for the severely disabled.

It is commonly believed that the change in the response when a target stimulus occurs can be detected, by extracting 
the low frequency P300 component, which is normally evoked around 300�ms after stimulus onset. The frequency 
range of this component is normally limited to 12�Hz and hence the EEG is often low-pass filtered to this range. 
However, in this study, we embark to show that the change also occurs in a higher frequency region of gamma 
(around 30–48�Hz) and that utilising this extra component in the high frequency range can result in better recognition 
performance.

Methodology
Data from five subjects were used in the study, three for the visual paradigm and two for the auditory paradigm where 
the former were obtained from the BCI group based at the École polytechnique fédérale de Lausanne (EPFL, 
Hoffman et al., 2007), while the latter was recorded in our biosignal analysis lab using a Biosemi Active Two device. 
The active electrodes used in the system removed the necessity to clean the scalp prior to inserting the electrodes. 
However, conductive gel was still required to minimise the impedance level to below 5�kΩ. The whole set-up required 
less than 15 minutes to be completed.

Visual Paradigm
The dataset provided by the EPFL BCI group consisted of EEG data recorded using oddball paradigm where the 
pictures depicted in Figure�2 were used as stimuli. Each participant took part in four sessions, with each session 
consisting of six runs. During each run, one of the six images acted as targets. Each image was flashed for 100�ms 
followed by a 300�ms inter-stimulus interval.

The pre-processing and classifier approaches used here were similar to 
the study by Hoffman et al. in 2007. Data from three able-bodied 
subjects from eight optimal electrodes (in the standard locations of Fz, 
Cz, Pz, Oz, P3, P4, P7, P8)�[1 <#1>] were used, as these gave good 
classification performance in the previous study (Hoffman et al., 
2007). The data were referenced to the average of the mastoid 
channels and a forward-reverse Butterworth band-pass filter with cut-
off frequencies of 1�Hz and 12�Hz was used to filter the data. The 
sampling frequency was 256�Hz and each trial was one second in 
length (i.e. 256 samples). To remove eye blinks and artifact activity, 
windsorising as described by Hoffman et al. was implemented. Percentile 
values of 10 and 90 were used from each channel to cap the minimum 
and maximum values, respectively, in the channel. This resulted in 
conventionally used features in the spectral range of 1–12�Hz to form 
a 256-length vector. Features from each channel were concatenated to 
give the final feature vector.
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1. See the Wikipedia article “10
-20 system (EEG) 
<http://en.wikipedia.org/wiki/10-

20_system_%28EEG%29>” for 
details about the placement of 
electrodes for EEG tests and 
experiments.

The aim of this study was to explore the influence of features from the gamma band 
on the classification accuracy. Hence, the EEG was also filtered in the 30–48�Hz 
spectral band and energy was calculated in the time range of 200–600�ms using a 
window size of 32 samples to form a three-element gamma energy vector. Feature 
fusion of both the low and high frequency features resulted in a vector of length of 
259 for each channel.

The recorded data consisted of 40–48 blocks, where each block consisted of the six 
images being flashed in random sequence. The data were divided into four sets. A three-fold cross validation method, 
using Bayesian LDA software provided by EPFL BCI group was used to obtain the classification accuracies. The 
classifier was trained on three sets and the fourth set was used as a testing dataset. The outputs of the classifier were 
added incrementally, i.e. the outputs were aggregated after each trial. The maximal output after considering all the six 
flashes in a trial was taken as the predicted target. Averaged performances from cross-validation runs were computed. 
All programs for data analysis were written using Matlab software.

Auditory Paradigm
Similar to the visual paradigm, data was recorded from target and non-target stimuli presented in a random manner. 
Four standard computer audio files�— “ding”, “exclamation”, “chimes” and “recycle”�— were selected to form the 
auditory stimuli of four class BCI. The audio tone was played for 100�ms, while the inter-stimulus interval (ISI) was 
selected to be 750�ms. Data from eighteen electrodes positioned at FP1, FPz, FP2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, 
T4, T5, P3, Pz, P4 and T6 were recorded. These locations were chosen based on another study by De�Gurtubay et al. 
in 2004. The participant was presented with the target cue audio tone, and pressing the “Enter” key started the 
experiment. The auditory stimuli were presented for 40–48 blocks. During the experiment, the participant was 
requested to close his or her eyes and count the target tones, while ignoring the non-target tones. Two two level audio 
tones (one for the target and another for the non-target) were used during the experiment. Etyomic insert earphones 
were used for better audio quality as these have flat frequency responses. All the pre-processing, feature extraction 
and classification steps used were similar to the visual paradigm.

Evaluation Metric
Though the classification accuracy is a good measure of the performance, it is not sufficiently good in comparing 
different BCI systems, as the number of targets could vary along with the response time taken. One objective means 
of comparing the utility of BCIs is by their information throughput or bit rates. The bit rate B in bits/minute is used 
to characterise the performance of BCI systems and can be computed according to the following equation below 
(Wolpaw et al., 2002):

In the equation above, N denotes the number of different commands that a user can select (i.e. the number of 
classes), p denotes the probability that a command is correctly recognized by the system (i.e. the accuracy rate) and t is 
the time in seconds that is needed to select one command.

Results
The performances due to feature fusion were compared with the performance using low frequency features alone. 
Figures 3 through 5 illustrate the classification accuracies (solid lines) as well as the bit rates (dotted lines) for the 
visual paradigm for all three participants. The cross-validated accuracies were averaged and bit rates calculated using 
Wolpaw et al.’s definition (Eq.�1). The results from the other two participants for the auditory paradigm are shown in 
Figures 6 and 7. The y-axis represents the accuracies and bit rates, while the x-axis represents the time (i.e. as the trial 
blocks advance).
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It can be seen from these figures for the visual paradigm that by adding information from the gamma band frequency 
range, the classification accuracy is increased, especially with smaller number of trials used. The improvement can also 
be seen with the higher bit rates. The classification eventually reaches 100% (after about 30 seconds for all 
participants) for both low frequency and fusion features. For the auditory paradigm, the improvement in accuracy and 
bit rate is similar with fusion features performing better.

Conclusion

The inclusion of higher frequency gamma band (30–48�Hz) energy features in the 200–600�ms together with the 
conventionally used low frequency features has resulted in improved performance to distinguish between target and 
non-target stimuli in both visual and auditory paradigms for BCI designs. The results in this case confirm the work of 
others in the auditory oddball paradigm (De�Gurtubay et al., 2001; De�Gurtubay et al., 2004) showing that the 
activities in gamma-band EEG are coupled with low frequency components.

Bibliography

Donchin, Emanuel, Kevin�M. Spencer and Ranjith Wijesinghe. “The Mental Prosthesis: Assessing the speed of a P300-based brain-computer 
interface.” IEEE Transactions on Rehabilitation Engineering 8/2 (June 2000), pp. 174–179.

García De�Gurtubay, Iñaki, Manuel Alegre, Alberto Labarga, Armando Malanda and Julio Artieda. “Gamma Band Activity in an Auditory 
Oddball Paradigm Studied with the Wavelet Transform.” Clinical Neurophysiology 112/7 (July 2001), pp. 1219–1228.

_____. “Gamma Band Responses to Target and Non-Target Auditory Stimuli in Humans.” Neuroscience Letters 367/1 (August 2004), pp.6–9.

Hinterberger, Thilo, Stefan Schmidt, Nicola Neumann, Jürgen Mellinger, Benjamin Blankertz, Gabriel Curio and Niels Birbaumer. “Brain 
Computer Communication and Slow Cortical Potentials.” IEEE Transactions on Biomedical Engineering 51/6 (June 2004), pp. 1011–1018.

Hoffmann, Ulrich, Jean-Marc Vesin, Touradj Ebrahimi and Karin Diserens. “An Efficient P300-Based Brain-Computer Interface for Disabled 
Subjects.” Journal of Neuroscience Methods 167/1 (January 2008), pp. 115–125.

Ince, Nuri�F., Fikri Goksu, Ahmed�H. Tewfik and Sami Arica. “Adapting Subject Specific Motor Imagery EEG Patterns in Space-Time-
Frequency for a Brain Computer Interface.” Biomedical Signal Processing and Control 4/3 (July 2009), pp. 236–246.

Miranda, Eduardo Reck and Andrew Brouse. “Toward Direct Brain-Computer Musical Interfaces.” NIME 2005. Proceedings of the 5th 
International Conference on New Instruments for Musical Expression (Vancouver: University of British Columbia, 26–28 May 2005), 
pp. 216–219.

Palaniappan, Ramaswamy. “Utilizing Gamma Band to Improve Mental Task Based Brain-Computer Interface Design.” IEEE Transactions on 
Neural Systems and Rehabilitation Engineering 14/3 (September 2006), pp. 299–303.

Vermeulen, Valery. EMO-Synth website. 2012. http://www.emo-synth.com <http://www.emo-synth.com> [Last accessed 16 May 2012]

Wilson, John�J. and Ramaswamy Palaniappan. “Analogue Mouse Pointer Control via an Online Steady State Visual Evoked Potential (SSVEP) 
Brain-Computer Interface.” Journal of Neural Engineering 8/2 (April 2011). [doi: 10.1088/1741-2560/8/2/025026]

Wolpaw, Jonathan�R., Niels Birbaumer, Dennis�J. McFarland, Gert Pfurtscheller and Theresa�M. Vaughan. “Brain-Computer Interfaces for 
Communication and Control.” Clinical Neurophysiology 113/6 (June 2002), pp. 767–791.

Biography

Cota Navin Gupta received his PhD on P300-based brain computer interfaces from University of Essex, UK in 2011, 
supported by an Overseas Research Fellowship Award (ORSAS) and University of Essex scholarship awards. He obtained 
his MS degree (Biomedical Engineering) in 2005 on algorithm development for heart sounds analysis at Nanyang 
Technological University, Singapore. He is currently pursuing his Postdoctoral Research at Mind Research Network, USA. 
His research interests include biological signal processing, multivariate analysis, brain-computer interfaces, artificial neural 
networks and genetic algorithms.

Ramaswamy Palaniappan is currently a senior lecturer with the Department of Engineering, School of Technology, 
University of Wolverhampton, UK. His research interests include biological signal processing, brain-computer interfaces, 
biometrics, neural networks, genetic algorithms, and image processing. To date, he has written two books and published 
over 120 papers in peer-reviewed journals, book chapters and conference proceedings. He is a senior member of the 
Institute of Electrical and Electronics Engineers, member of the Institution of Engineering and Technology and the 

Page 4 of 5CEC — eContact! 14.3 - Using High-Frequency Electroencephalogram in Visual and Au...

13/07/2012http://cec.sonus.ca/econtact/14_3/gupta-palanappian_interfacedesign.html



 
Ramaswamy 
Palaniappan

Biomedical Engineering Society. He also serves as editorial board member for several international journals. His 
pioneering work on brain-computer interfaces has received international recognition.

�

eContact! 14.3 <index.html> (June / juin 2012). Montréal: Communauté électroacoustique canadienne�/ Canadian 
Electroacoustic Community <../../index.html>.

Page 5 of 5CEC — eContact! 14.3 - Using High-Frequency Electroencephalogram in Visual and Au...

13/07/2012http://cec.sonus.ca/econtact/14_3/gupta-palanappian_interfacedesign.html


